EVAPORACIÓN Y EVAPOTRANSPIRACIÓN EN HIDROLOGÍA MEDICIÓN, ESTIMACIÓN Y AFLICACIONES

EVAPORACIÓN y EVAPOTRANSPIRACIÓN en HIDROLOGÍA medición, estimación y aplicaciones

Edwin M. Pino Vargas

Pino, Edwin, 1968-Evaporación y evapotranspiración en hidrología medición, estimación y aplicaciones / Edwin Martín Pino Vargas.-- 1a ed.-- Tacna: Universidad Nacional Jorge Basadre Grohmann, Fondo Editorial Universitario, 2021. 156 p.; 24 cm. Bibliografía: p. 111-114. D.L. 2020-00000 ISBN 978-000-00000-0-0

1. Agua 2. Evaporación 3. Evapotranspiración 4. Hidrología 5. Humedad I. Título

© EVAPORACIÓN Y EVAPOTRANSPIRACIÓN EN HIDROLOGÍA Medición, Estimación y Aplicaciones

Autor:

© Edwin Martín Pino Vargas

Editado por:

© 2021, Universidad Nacional Jorge Basadre Grohmann. Fondo Editorial Universitario Av. Miraflores s/n, Tacna - Perú foed@unjbg.edu.pe

Primera edición, febrero 2021

Hecho el Depósito Legal en la Biblioteca Nacional del Perú Nº 2021-02169. ISBN: 978-612-48189-7-4

Versión digital disponible en: https://libros.unjbg.edu.pe

Revisión técnica: El presente libro cumplió con el sistema de evaluación por pares (doble ciego). 1° evaluador: David Ricardo Ascencios Templo. 2° evaluador: Lia Ramos Fernández.

Revisión de estilo: Paul Dorian Céspedes Sánchez. **Diseño de la portada y diagramación de interiores:** José Luis Choque Dávila.

Se terminó de publicar en versión digital en febrero de 2021.

Las opiniones expuestas en este libro son de exclusiva responsabilidad del autor y no necesariamente reflejan la posición de la editorial.

EVAPORACIÓN y EVAPOTRANSPIRACIÓN en HIDROLOGÍA medición, estimación y aplicaciones

Edwin M. Pino Vargas

DEDICATORIA

A Dios, por permitirme vivir al lado de mis amores, que son la razón de mi vida: mi esposa Mely y mis adoradas hijas, Claudia y Diana.

A mis queridos padres, Fermín y Nélida, que supieron dar el rumbo adecuado a mi vida, con trabajo, dedicación, esmero y pasión por lo que hacemos en nuestras vidas.

A todos los miembros de mi familia, así como a mis amigos, quienes están pendientes de mis logros académicos y profesionales, y

A todos los hombres y mujeres que, desde los inicios de la vida en nuestro planeta, supieron relacionarse con el uso de las matemáticas para resolver los problemas cotidianos.

AGRADECIMIENTO

Un sincero agradecimiento a los árbitros revisores de este libro, tanto de la Universidad Católica del Perú (PUCP) como de la Universidad Nacional Agraria La Molina (UNALM), por sus acertadas observaciones y recomendaciones en bien de mejorar el contenido de esta obra.

Al Vicerrectorado de Investigación, Instituto General de Investigación y Fondo Editorial de la Universidad Nacional Jorge Basadre Grohmann (UNJBG), por dar la rigurosidad necesaria para lograr que este material tenga la calidad deseada en términos de contenido y edición.

TABLA DE CONTENIDOS

TABLA DE CONTENIDOS LISTA DE FIGURAS LISTA DE TABLAS SOBRE EL AUTOR PRÓLOGO	09 13 15 17 19
 CAPÍTULO I: ANTECEDENTES Antecedentes Históricos Evaporación y Evapotranspiración 	23 24
1.3. Medición y Estimación	25
2. CAPÍTULO II. EVAPORACIÓN	
2.1. Aspectos Generales	29
2.2. Concepto de Evaporación	29
2.3. Factores que Influven en el Proceso	30
2.3.1. Energía Disponible	31
2.3.2. Déficit de Saturación Hiarométrico	31
2.3.3. Temperatura	31
2.3.4. Velocidad y Turbulencia del Viento	31
2.3.5. Presión	31
2.3.6. Forma de la Superficie Evaporante	32
2.3.7. Calidad del Agua	32
2.4. Instrumentos de Medición	32
2.4.1. Evaporímetro de Balanza	32
2.4.2. Superficie de Papel Húmedo	33
2.4.3. Tanque de Evaporación	34
2.5. Métodos de Estimación	36
2.5.1. Métodos Teóricos	36
2.5.1.1. Balance Hídrico	36
2.5.1.2. Balance Energético	38
2.5.2. Métodos Semiempíricos	40
2.5.2.1. Fitzgerald (1886)	41
2.5.2.2. Lugeon	41
2.5.2.3. Rohwer, (1931)	41
2.5.2.4. Harbeck (1962)	41
2.5.2.5. Meyer (1915)	42
2.5.2.6. Servicios Hidrológicos de la Antigua URSS	42
2.5.2.7. Chistianssen y Guillén	42
2.5.2.8. Lago Hefner	43

2.5.2.9. Lago Mead	43
2.5.2.10.Ven Te Chow	44
2.5.3. Métodos Combinados	48
2.5.3.1. Método de Penman (1948)	48
2.6. Evaporación desde Suelo Húmedo	57
2.6.1. Fórmula de Turc	57
3. CAPÍTULO III. EVAPOTRANSPIRACIÓN	
3.1. Aspectos Generales	61
3.2. Concepto de Evapotranspiración	62
3.2.1. Evapotranspiración Potencial	64
3.2.2. Evapotranspiración Real	65
3.3. Factores que Influyen en el Proceso	66
3.4. Instrumentos de Medición	67
3.4.1. Lisímetros	67
3.4.2. Torre Eddy Covarianza	70
3.5. Métodos de Estimación	73
3.5.1. Métodos Directos	73
3.5.1.1. Balance Hidrico	73
3.5.1.2. Balance Energético	74
3.5.2. Metodos Indirectos	75
3.5.2.1. Corrección de Tanque Evaporimetro	/5
3.5.2.2. Modelos Fisicos	//
3.5.2.3. Modelos de Temperatura	/8
3.5.2.4. Modelos de Kadiación	/9
3.5.2.5. Modelos Combinados	9Z
3.5.2.6. Modelos Usando Imagenes	105
3.6. USO de Programas de Calculo	129
3.6.1. USO de Cropwal 2.6.2. Uso de Cropwal y Climyat	130
3.0.2. USU UE CTUPWUL Y CHIMWUL 2.6.2. OnlineCale del Dr. Víctor Miguel Donce	131
5.6.5. Onlinecult del DF. Victor Miguel Ponce	154
4. CAPÍTULO IV. INTELIGENCIA ARTIFICIAL Y ET	1/1
4.1. Aspectos de Inteligencia Artificial	141
4.2.1 Dod Neuronal Artificial (DNA)	142
4.2.2 Máquing de Vectores de Sonorte (SVM)	146
4 2 3 Modelos Difusos	140
4.2.4. Modelos Basados en Árholes	149
4.3. Modelos Híbridos	149
4.3.1. Fusión de Datos y Modelado de Coniuntos	149
4.3.1.1. Promedio	150
4.3.1.2. Ensacado	150

4.3.1.3. Enfoques de Modelado Bayesiano	151
4.3.1.4. Algoritmo de Refuerzo	151
4.3.1.5. Conjunto Neural No Lineal	152
4.3.1.6. Modelos de Conjunto para Teledetección	152
4.3.2. Descomposición de Datos	153
4.4. Machine Learning para Estimación de Evapotranspiración	157
4.4.1. Descripción	157
4.4.2. Código Utilizado	158
4.4.3. Archivos de Datos	160
4.4.4. Código Python y Resultados	161
5. CAPÍTULO V. SENSORES REMOTOS Y <i>ET</i>	
5.1. Aspectos Generales	165
5.2. Satélites y Drones	168
5.3. Drones versus Satélites	168
5.4. Uso de Sensores Remotos	170
5.5. Mapeo de <i>ET</i> Basado en Sensores Remotos	172
5.6. Extracción de Funciones y Clasificación para el Medio Ambie	nte 173
5.7. Uso de Imágenes Satelitales, Modelo de Balance de Energía	174
de Superficie Simplificado (SSEBop)	
5.7.1. Descripción	174
5.7.2. OpenET - SSEBop	175
5.7.3. Colecciones de Entrada	176
5.7.4. Diseño del Modelo	176
5.7.5. Modelo de Salida	177
5.7.6. Imagen de Entrada Personalizada	177
5.7.7. Conjuntos de Datos Auxiliares	178
5.8. Uso de Imágenes de Dron, Determinación del Índice de Estré	s 179
Hídrico del Cultivo (CWSI) en Olivo	
5.8.1. Descripción	179
5.8.2. Procesamiento de Imágenes Aéreas	180
5.8.3. Índice de Estrés Hídrico de Cultivo (CWSI)	180
5.8.4. Índice de Vegetación de Diferencia Normalizada (NDVI)	182
5.8.5. Resultados Obtenidos	182
REFERENCIAS	189
APÉNDICES	201

LISTA DE FIGURAS

Figura 2.1	Evaporímetro tipo Wild (INIA 2019)	22
Figura 2.1.	Evaporímetro Piché (INIA, 2019)	32
Figura 2.2.	Tanque de evanoración clase A exterior (Allen, 2006)	34
Figura 2.4	Tanques de evaporación enterrados (Allen, 2006)	35
Figura 2.5	Diferentes modelos de osicrómetros (INIA, 2000)	35
Figura 2.6.	Nomograma de Penman (Monsalve, 1999)	49
Figura 2.7.	Eiemplo de nomograma de Penman (Monsalve, 1999)	50
Figura 2.8.	Curva de presión de vapor de saturación ys. temperatura (Monsalve, 1999)	51
Figura 3.1.	Representación esquemática de un estoma (Allen, 2006)	62
Figura 3.2.	Repartición de la evapotranspiración en evaporación y transpiración	63
8	durante el periodo de crecimiento de un cultivo anual (Allen, 2006)	
Figura 3.3.	Proceso de cálculo de la <i>ETc</i> (Allen, 2006)	66
Figura 3.4.	Curva típica <i>Kc</i> (Allen, 2006)	66
Figura 3.5.	Esquema y fotos de lisímetros (Sánchez, 2017)	68
Figura 3.6.	Tipos de lisímetros: de pesada, de drenaje sin succión y de drenaje con	69
	succión (Sánchez, 2017)	
Figura 3.7.	Esquema de balance en un lisímetro (Sánchez, 2017)	69
Figura 3.8.	Torre Eddy Covariancia (Aubinet et al., 1999)	71
Figura 3.9.	Curvas base para la fórmula de Turc (Monsalve, 1998)	86
Figura 3.10.	Relación entre evapotranspiración mensual y la radiación solar total	90
	mensual (Aslyng, 1974)	
Figura 3.11.	Balance de energía superficial (Bastiaanssen, 2000)	107
Figura 3.12.	Balance de la radiación superficial (Allen, 2006)	108
Figura 3.13.	Diagrama de flujo para el cálculo de la radiación neta (Allen, 2006)	110
Figura 3.14.	Diagrama de flujo del proceso de iteración para el cálculo de H	118
	(Bastiaanssen et al., 1998)	
Figura 3.15.	Resistencia aerodinámica entre dos altitudes (Bastiaanssen et al., 1998)	119
Figura 3.16.	Gráfico de la relación <i>dT</i> vs. <i>Ts</i> (Bastiaanssen et al., 1998)	122
Figura 3.17.	Gráfico de <i>ET</i> y <i>ETrF</i> en el tiempo diario; observaciones del Dr. Jim Wright	126
	(Allen, 2002)	
Figura 3.18.	Esquema operativo del modelo Metric (Bastiaanssen et al., 1998)	127
Figura 3.19.	Esquema de cálculo de <i>Rn</i> del modelo Metric (Bastiaanssen et al., 1998)	128
Figura 3.20.	Formulario Cropwat con datos y resultados	130
Figura 3.21.	Estaciones climáticas a nivel mundial, base de datos Climwat	131
	(http://www.fao.org/land-water/databases-and-software/cropwat/es/)	
Figura 3.22.	Pantalla de programa Climwat 2.0	132
Figura 3.23.	Listado de estaciones de la base Climwat para Perú	133
Figura 3.24.	Exportando listado de estaciones	133

Figura 3.25.	Cálculo final de la <i>ETo</i> usando data de Climwat	133
Figura 3.26.	Página web: HTTP://PONCE.SDSU.EDU/, San Diego State University	134
	(SDSU)	
Figura 3.27.	Pantalla principal de la OnlineCalc del Dr. Víctor Miguel Ponce	135
Figura 3.28.	Cálculo de <i>ET</i> con Blaney-Criddle	136
Figura 3.29.	Cálculo de <i>ET</i> con Penman	136
Figura 3.30.	Cálculo de <i>ET</i> con Penman-Monteith	137
Figura 3.31.	Cálculo de <i>ET</i> con Thornthwaite	137
Figura 3.32.	Cálculo de <i>ET</i> con Priestley-Taylor	138
Figura 3.33.	Cálculo de ET Penman-Monteith para ecosistemas	138
Figura 4.1.	Disciplinas de la inteligencia artificial (Granata, 2019)	141
Figura 4.2.	Características de los modelos de redes neuronales artificiales	143
	(Rahimikhoob, 2010)	
Figura 4.3.	Principio de funcionamiento de la máquina de vectores de soporte (Cortes	146
	& Vapnik, 1995)	
Figura 4.4.	Estructura de red de la máquina de vectores de soporte (Zendehboudi et	147
	al., 2018)	
Figura 4.5.	Flujo general del sistema de inferencia difusa (Kisi, 2013)	148
Figura 4.6.	Rutas para el desarrollo de modelos híbridos. RNA - Red neuronal	154
	artificial, ANN en inglés- y SVM - Máquina de vectores de soporte- (Chia et	
	al., 2020)	
Figura 4.7.	Entorno de desarrollo interactivo Jupyter	159
Figura 4.8.	Estructura de archivos y carpetas en Jupyter	160
Figura 4.9.	Archivo de datos originales layarada.csv	161
Figura 5.1.	Satélite versus drones (Barnes, 2018)	169
Figura 5.2.	Diagrama esquemático del balance energético medio anual global ($W \cdot m^2$)	171
	de la Tierra. Los valores numericos se toman de Kiehl & Trenberth (1997)	
D . E D	y de Wild et al. (2013)	170
Figura 5.3.	Marco típico de reconocimiento de patrones para la toma de decisiones	1/3
	ambientales (Escalante, 2012)	175
Figura 5.4.	(Pastiaanaan et al. 1999)	1/5
Figure F F	(Dastidalisseil et al., 1996) Mosaico do tomporaturos (°C) obtonido con cómoro tórmico (Eucoto:	102
rigura 5.5.	alaboración propia)	102
Figura 5 6	ciaboración propiaj Mospico NDVI obtenido en vuelo de dron (Fuente: elaboración propia)	10/
Figura 5.0.	Mosaico (WSI obtenido en vuelo de dron (Fuente: elaboración propia)	104 105
rigura 5.7.	mosarco civisi obtenho en vuero de dron (ruente: elaboración propia)	102

LISTA DE TABLAS

Tabla 2.1	Coeficiente C_{M} por mes (Hager, 2015)	43
Tabla 2.2	Propiedades físicas del agua (Linsley et al., 1982)	45
Tabla 2.3	Valores de A en cal/(cm²-día) (Monsalve, 1999)	47
Tabla 2.4	Tensión de vapor de saturación <i>e</i> , en mm Hg (Monsalve, 1999)	55
Tabla 3.1	Coeficientes de bandeja clase A (Doorenbos y Pruitt, 1977)	76
Tabla 3.2	Coeficiente de tanque clase A (Allen, 1998)	76
Tabla 3.3	Número máximo de horas de sol en el hemisferio norte (**) (Allen et	79
	al.,1998)	
Tabla 3.4	Porcentaje medio diario de horas anuales (Monsalve, 1999)	81
Tabla 3.5	Radiación solar extraterrestre en mm/día (Allen et al., 1998)	85
Tabla 3.6	Factores de conversión de evaporación (Allen et al., 1998)	98
Tabla 3.7	$L_{_{MIN}}$ y $L_{_{MAX}}$ valores para Landsat 5 TM y 7 ETM+ (Allen, 2006)	111
Tabla 3.8	Valores de ESUNλ para Landsat 5 y Landsat 7 (Wm²/μm) (Allen, 2006)	112
Tabla 3.9	Coeficientes de ponderación, $\omega\lambda$ (Allen, 2006)	112
Tabla 3.10	Valores típicos de albedo (Bastiaanssen et al., 2000)	113
Tabla 3.11	Constantes K_1 y K_2 para Landsat 5, 7 y 8. (Allen, 2006)	115
Tabla 3.12	Estimación de G/R_n para varias superficies (Bastiaanssen et al., 2000)	117
Tabla 4.1	Diferentes técnicas de hibridación (Chia et al., 2020)	155
Tabla 4.2	Mapeo de técnicas de hibridación para modelos de inteligencia artificial	157
	(Chia et al., 2020)	
Tabla 5.1	Resumen de los principales métodos de mapeo ET basados en satélites	172
	existentes (Wild et al., 2013)	

SOBRE EL AUTOR

EDWIN M. PINO VARGAS, Ph.D. Doctoris Philosophiae en Recursos Hídricos Magister of Scientiae en Recursos Hídricos

Ingeniero Agrícola Ingeniero Civil

El autor, desde 1991, se ha desarrollado en diferentes actividades académicas, científicas y pedagógicas, siendo las principales: Investigación, ejercicio profesional y docencia. Ha sido calificado como investigador por el Renacyt del Concytec desde el año 2018, ha ejercido, hasta la fecha, la práctica profesional y la docencia universitaria en pregrado y posgrado (Maestría y Doctorado) en la especialidad de Ingeniería de Recursos Hídricos en las siguientes universidades: (1) Universidad Nacional Agraria La Molina (pregrado en los años 1993-1994); (2) Universidad Privada de Tacna (1996-2018); (3) Universidad Nacional Jorge Basadre Grohmann (1996 hasta la fecha); (4) en la actualidad, además, es profesor visitante del programa de doctorado en Recursos Hídricos de la Universidad Nacional Agraria La Molina.

También ha realizado actividad profesional como supervisor, proyectista y residente de estudios y obras en la especialidad de Ingeniería de Recursos Hídricos y afines (Modelación numérica, Diseño de sistemas de riego presurizado, Hidrología e Hidrogeología, Hidráulica, Presas, Estructuras de protección de cauces, Defensas ribereñas, etc.).

En el ámbito internacional, se registra su participación como ponente en congresos latinoamericanos y mundiales de hidráulica desde el año 2011, como, por ejemplo, el Congreso Mundial de Hidráulica (China, 2011; Costa Rica, 2013; Holanda, 2015; Malasia, 2017 y Panamá, 2019). Asimismo, ha participado como ponente en el Congreso Latinoamericano de Hidráulica (Santiago de Chile, 2014; Lima, 2016; Buenos Aires, 2018, y con trabajo aceptado para el 2020 en Acapulco, México).

Finalmente, ha sido profesor titular, por más de 20 años, de la asignatura "Hidrología" en la Escuela de Ingeniería Geológica-Geotecnia, Programa Doctoral en Ciencias Ambientales, Universidad Nacional Jorge Basadre Grohmann, asimismo profesor del mismo curso para estudiantes y profesores de otras universidades.

PRÓLOGO

Este libro busca abordar una de las variables más importantes del ciclo hidrológico y del propio balance hídrico realizado por los hidrólogos en la búsqueda de contar con fuentes de agua disponible ante la cada vez más creciente necesidad de agua para cubrir las necesidades básicas y de actividades económicas de la población mundial.

El Capítulo I trata sobre los antecedentes históricos y las definiciones básicas del tema. En el transcurso del tiempo se ha generado mucho interés, especialmente en los investigadores, por conocer acerca del funcionamiento del sistema natural, particularmente el del agua, es así que observamos que los primeros indicios sobre el estudio de la evaporación y evapotranspiración surgen en la Biblia, específicamente en el libro Génesis, de la Palabra de Dios, en el capítulo 2, versículos 4 al 6; pero es a partir de Halley (1656-1742), quien se interesó por el fenómeno de evaporación, que comienzan a aparecer una serie de estudios y formulaciones sobre este fenómeno.

El Capítulo II se refiere a la evaporación; donde se abordan los conceptos fundamentales, los factores de los cuales depende este fenómeno, los instrumentos de medición y las metodologías empleadas hasta la actualidad. El desarrollo del capítulo está acompañado de algunos ejemplos de cálculo, usando las formulaciones y metodologías presentadas.

En el Capítulo III se desarrolla la evapotranspiración, que es el tema más estudiado y complejo, en el que se abordan conceptos básicos, factores determinantes, instrumentos de medición y la amplia variedad de métodos que existen para su determinación, sean métodos directos o indirectos; se ha tratado de abordar todo el universo de metodologías existentes hasta la actualidad.

En el Capítulo IV se hace referencia a metodologías de inteligencia artificial aplicadas a la estimación de la evapotranspiración, se describen los diferentes modelos y se presenta una aplicación en Machine Learning.

En el Capítulo V se aborda el uso de los sensores remotos, tanto satélites para la gran escala como drones para la escala reducida; asimismo, se presentan ejemplos detallados de aplicación sobre el uso de imágenes satelitales e imágenes obtenidas desde drones.

Tacna, diciembre de 2020

Edwin M. Pino Vargas

CAPÍTULO I: ANTECEDENTES

1.1. Antecedentes Históricos

Algo interesante que nos remonta a la creación misma es la evapotranspiración. Está registrada en Génesis, el primer libro de la Palabra de Dios, en el capítulo 2, versículos 4 al 6, lo siguiente (Gn. 2:4-6, Nueva versión internacional):

⁴ Estos son los orígenes de los cielos y de la tierra cuando fueron creados, el día en que Jehová Dios hizo la tierra y los cielos,

⁵ y toda planta del campo a antes que fuese en la tierra, y toda hierba del campo antes que brotase; porque aún no había Jehová Dios hecho llover sobre la tierra, ni había hombre para que labrase la tierra;

⁶ sino que subía de la tierra un vapor que regaba toda la faz de la tierra.

Hasta finales del siglo XVII fue dogmáticamente aceptada la idea de que el agua que descargan los manantiales y la que drenan los cauces de los ríos no podía proceder de las precipitaciones atmosféricas; en primer lugar, porque las consideraron siempre cuantitativamente insuficientes y, en segundo lugar, porque se tuvo siempre el concepto de que la superficie de la tierra era demasiado impermeable como para permitir una infiltración y percolación masiva, profunda, de las aguas de lluvia y demás aguas meteóricas. Veamos un apropiado resumen realizado por Sánchez (2017) en su libro *Hidrología Superficial y Subterránea* (p. 414) donde señala:

Desde Tales, Platón, Aristóteles, … hasta Kepler (1571 – 1630) y Descartes ("Principios de la Filosofía", 1644) no se limitaban con esbozar la idea del Ciclo al revés, sino que dedicaban largos textos a pormenorizar las diversas etapas del proceso. (...)

También hubo excepciones, como el arquitecto romano Vitrubio o Leonardo da Vinci que hablaron del ciclo hidrológico tal como es.

La Hidrología moderna nace con las experiencias de Perrault, Mariotte y Halley. Fueron los primeros hidrólogos empíricos que basaron sus ideas en medidas y no en especulación.

En 1674, Pierre Perrault publica "De l'origine des fontaines": Había medido las precipitaciones de la cuenca alta del Sena y los aforos del

río, concluyendo que el volumen de las precipitaciones era seis veces superior a las aportaciones del río. Mariotte, contemporáneo de Perrault, repitió estos experimentos (...) estudiando además la infiltración profunda del agua, y comprobando que el caudal de ciertos manantiales variaba de acuerdo con la oscilación de las precipitaciones.

Faltaba por cuantificar la otra mitad del Ciclo (...) El astrónomo Halley (1656-1742) se interesó por el fenómeno de evaporación porque se empañaban las lentes de sus telescopios. Realizó medidas y cálculos concluyendo que el volumen de agua evaporado un día de verano del Mediterráneo era superior al volumen de agua que recibe de todos los ríos que llegan a él.

1.2. Evaporación y Evapotranspiración

El fenómeno de la evaporación en el medio natural es de interés de diversas disciplinas (Brutsaert, 1982). Para optimizar el manejo de los recursos hídricos y ecosistemas acuáticos continentales se requiere de estimaciones de la evaporación y la evapotranspiración potencial cada día más precisas. Según Sánchez & Carvacho (2011), la evapotranspiración es un importante parámetro para diferentes campos científicos, y su medida es necesaria para la adecuada gestión de los recursos hídricos, la construcción de obras de riego y la caracterización de los diferentes ambientes climáticos. Cada día se requieren estimaciones más precisas de la evaporación en cuerpos de agua superficiales, sobre todo en regiones áridas y semiáridas donde los recursos hídricos son más escasos y el componente de evaporación adquiere mayor importancia.

Los métodos desarrollados durante los últimos 50 años para estimar la evaporación en cuerpos de agua y en terrenos naturales se basan en el uso de datos meteorológicos (R.G. Allen et al., 1998). A su vez, se han probado y desarrollado, en todo el mundo, muchos métodos para reducir el volumen de agua que se genera en el proceso de evaporación (Youssef & Khodzinskaya, 2019).

La evaporación es el resultado del proceso físico por el cual el agua cambia de estado líquido a gaseoso y retorna directamente a la atmósfera en forma de vapor. La radiación solar, y en menor grado la temperatura ambiente del aire, proporcionan la energía que emplean las moléculas de agua para producir este cambio de estado. La fuerza impulsora para retirar el vapor de agua de una superficie evaporante es la diferencia entre la presión de vapor de agua en la superficie evaporante y la presión de vapor de agua en la atmósfera circundante; esta diferencia se denomina déficit higrométrico.

En condiciones naturales, la evaporación y la transpiración son fenómenos interdependientes. La pérdida de agua producida a causa de estos dos procesos se engloba bajo el concepto de evapotranspiración (ET). La transpiración es el resultado del proceso fisiológico y biológico por el cual el agua cambia del estado líquido al gaseoso a través del metabolismo de la planta. Esencialmente, es el mismo proceso físico que la evaporación, excepto que la superficie desde la cual se escapan las moléculas del líquido no es de agua libre, sino de la superficie de las hojas.

1.3. Medición y Estimación

La evaporación y la transpiración son procesos interdependientes que se realizan en la naturaleza en forma simultánea. Debido a la dificultad de discriminar evaporación y transpiración se introdujo el concepto de evapotranspiración. La unidad usual con la que se expresan estos tres términos es el milímetro de altura de agua, referido siempre a un determinado intervalo de tiempo. La unidad de tiempo puede ser una hora, un día (o más), un mes, un periodo completo de cultivo o un año.

A través del tiempo se han propuesto numerosas ecuaciones para realizar estimaciones de la evaporación y la evapotranspiración potencial, tanto a escala diaria como mensual. Algunos procedimientos requieren datos de temperatura promedio del aire y del número de horas de luz, mientras que otros emplean, además, datos de radiación diaria, temperatura del agua, presión de vapor y velocidad del viento, entre otros.

En el caso de la evaporación podemos establecer instrumentos de medición y métodos de estimación (tanto teóricos, semiempíricos, como combinados). En el caso de la evapotranspiración también tenemos instrumentos de medición y métodos de estimación directos e indirectos.

CAPÍTULO II: EVAPORACIÓN

2.1. Aspectos Generales

La evaporación, uno de los componentes fundamentales del ciclo hidrológico, está influenciada de manera diferente por diversas variables meteorológicas en diferentes regiones climáticas. La predicción precisa de la evaporación es esencial para múltiples aplicaciones de ingeniería de recursos hídricos, particularmente en países en desarrollo (Yaseen et al., 2020).

Actualmente, los estudios exploran el impacto de las condiciones climáticas en la predicción de la evaporación, y se vienen desarrollando varios modelos para la predicción de la evaporación en diferentes escenarios, siendo los métodos de inteligencia artificial (IA) los más populares (Allawi et al., 2019); sin embargo, los modelos existentes se basan en varios parámetros climáticos como entradas para lograr un nivel de precisión aceptable, algunos de los cuales no han estado disponibles en ciertos estudios.

La tecnología satelital viene haciendo su parte permitiendo establecer que la evapotranspiración y la absorción de carbono fotosintético están limitadas por la disponibilidad de agua y energía; además, se vienen investigando las relaciones de disponibilidad de agua con los flujos de evaporación y las medidas fotosintéticas a escala continental utilizando observaciones de superficie y satelitales (Gianotti et al., 2019).

La caracterización de los ciclos terrestres de carbono, agua y energía depende, en gran medida, de la capacidad de reproducir con precisión la dinámica espacial y temporal de la evaporación de la superficie terrestre. Por esta y muchas otras razones, el monitoreo de la evaporación terrestre, a través de múltiples escalas espaciales y temporales, ha sido un área de investigación focalizada durante varias décadas (McCabe et al., 2019).

2.2. Concepto de Evaporación

La evaporación, un fenómeno comúnmente encontrado en la naturaleza (Lu et al., 2019), es el resultado del proceso físico por el cual el agua cambia de estado líquido a gaseoso, retornando directamente a la atmósfera en forma

de vapor. A nivel molecular, el proceso de evaporación se inicia cuando las moléculas de agua, que se encuentran en continuo movimiento en una superficie libre, llegan a la parte superior.

La evaporación ocurre cuando un líquido se convierte en gas. Se puede visualizar fácilmente cuando los charcos de lluvia "desaparecen" en un día caluroso o cuando la ropa mojada se seca al sol. En estos ejemplos, el agua líquida no se está desvaneciendo, se está evaporando; es decir, convirtiendo en un gas llamado vapor de agua (Society, 2019).

Según Chandler (2019), el proceso de cambio de fase de líquido a vapor es una comprensión fundamental que todavía es relativamente limitada; si bien se han desarrollado muchas teorías referidas al cambio de fase, en realidad, aún no hay evidencia experimental de los límites fundamentales de la física de la evaporación. La evaporación y la condensación pueden realizarse en diferentes fenómenos y tecnologías naturales. Una peculiaridad de estos procesos es la transferencia de masa y calor acoplados desde la evaporación a la superficie de condensación (Zhakhovsky et al., 2019).

2.3. Factores que Influyen en el Proceso

A medida que ocurre la evaporación, el aire circundante se satura gradualmente de agua y el proceso se vuelve cada vez más lento hasta detenerse completamente si el aire mojado circundante no se transfiere a la atmósfera. El reemplazo del aire saturado por aire más seco depende de la velocidad del viento. Así, la evaporación es proporcional al déficit de tensión de vapor entre el aire saturado (a la temperatura del agua) y la tensión de vapor en el aire. Si el aire saturado no es reemplazado, no solo disminuye la evaporación, sino que se ve incrementada la condensación y el retorno de las moléculas de agua al estado líquido.

La evaporación de tanque es un indicador importante de la intensidad de evaporación regional y el grado de sequía; sin embargo, aunque se espera una mayor evaporación bajo el aumento de las temperaturas, se ha observado una tendencia inversa en muchas partes del mundo, conocida como la "paradoja de la evaporación del tanque" (Yan et al., 2019).

Los factores que afectan a la evaporación son, principalmente, aquellos que influyen sobre el suministro de energía y el transporte de vapor. Dentro de los que afectan a la evaporación desde una superficie de agua libre (los más importantes) pueden mencionarse: energía disponible, déficit de saturación higrométrico, temperatura, velocidad y turbulencia del viento, presión, forma de la superficie evaporante y calidad del agua. Asimismo, otros estudios evalúan la evaporación desde el suelo considerando el efecto de dos factores adicionales: el grado de cobertura del suelo y la cantidad de agua disponible.

2.3.1.Energía Disponible

La energía utilizada en la evaporación tiene como fuente principal la radiación solar. Parte de esta se emplea en calentar el suelo y el aire, y otra parte es empleada en el proceso de evaporación. Tanto la energía acumulada en el suelo como en el aire pueden transferirse posteriormente al proceso de evaporación.

2.3.2. Déficit de Saturación Higrométrico

La evaporación será mayor cuanto mayor sea el déficit de saturación higrométrico, ya que se ve incrementado el poder evaporante de la atmósfera.

2.3.3. Temperatura

La evaporación aumenta con la temperatura al afectar directamente la tensión de vapor de saturación; a mayor temperatura, la tensión de vapor de saturación es mayor, ya que la energía cinética de las moléculas aumenta, pero el incremento de la temperatura del aire ambiente elevará tanto la tensión de vapor en el aire como la del agua.

2.3.4. Velocidad y Turbulencia del Viento

El viento asegura el reemplazo del aire en contacto con la superficie evaporante por nuevas capas con humedad inferior. La velocidad del viento, por lo tanto, favorece la evaporación; sin embargo, cuando la velocidad del viento es suficiente para remover todas las moléculas evaporadas, un aumento de la misma no incrementará en modo apreciable la evaporación.

2.3.5.Presión

La evaporación disminuye con el incremento de la presión. Esto se debe a que disminuye el déficit higrométrico, ya que la tensión de vapor en el aire se ve incrementada con el aumento de la presión.

2.3.6. Forma de la Superficie Evaporante

Un volumen de agua con una superficie plana tiene presión de vapor superior al de una cóncava y menor que el de una convexa, bajo las mismas condiciones.

2.3.7.Calidad del Agua

La presencia de distintos solutos en el agua incrementa la energía cinética que las moléculas de agua necesitan para pasar a la fase de vapor; por lo tanto, el efecto de la salinidad conduce a la reducción de la presión de vapor. Para periodos extensos de tiempo los efectos de la salinidad pueden despreciarse.

2.4. Instrumentos de Medición

La evaporación es factible de medición, y algunos instrumentos, para tal fin, son los siguientes:

2.4.1.Evaporímetro de Balanza

Consiste en un recipiente con agua depositado sobre una balanza que registra, por diferencia de peso, el agua perdida por evaporación. Un ejemplo de este tipo de instrumentos es el evaporímetro modelo Wild **(Figura 2.1.)** que consta de un depósito lleno de agua de 250 cm² de superficie y 35 mm de profundidad, instalado sobre una balanza. Presenta como desventaja la influencia del calentamiento de las paredes sobre la medición realizada, y entre sus ventajas puede mencionarse la posibilidad de realizar un registro continuo por medio de un evaporígrafo.

Figura 2.2. Evaporímetro Piché (INIA, 2019)

2.4.2. Superficie de Papel Húmedo

Se fundamenta en el humedecimiento de superficies de papel al contacto con un depósito de agua. El más usado es el evaporímetro Piché **(Figura 2.2.)**, comúnmente presente en las estaciones meteorológicas. Consta de un tubo cilíndrico de vidrio (de 25 cm de largo y 1.5 cm de diámetro) abierto por un extremo y cerrado por el otro, con una escala grabada creciente en milímetros. En el extremo abierto, una pinza terminada en una arandela metálica hace que se pueda tapar con un disco de papel filtro normalizado (de 30 mm de diámetro y 0.5 mm de espesor) fijada por capilaridad y mantenida por un resorte. Se rellena el tubo con agua, se tapa con el disco y se cuelga con este en la parte inferior anotando la graduación alcanzada por el agua. Al día siguiente se vuelve a medir la altura de la columna de agua (hay que tener en cuenta en ambos casos los efectos de la capilaridad del agua); la diferencia entre ambas alturas es la evaporación potencial del día anterior (INIA, 2019).

2.4.3. Tanque de Evaporación

La evaporación es medida monitoreando la pérdida de agua en un tanque durante un determinado periodo de tiempo. La frecuencia de la medición, generalmente, es diaria. Provee una medida del efecto integrado de la radiación, el viento, la temperatura y la humedad, sobre la evaporación desde una superficie abierta. Los tanques de evaporación son los instrumentos de medición más empleados y varían ampliamente en forma, medida y material. Según su ubicación, los tanques se clasifican de la siguiente manera:

Exteriores: Son fácilmente instalables y muy sensibles a las variaciones de temperatura del aire y de la insolación. El más usado es el "Tanque de evaporación clase A", que se caracteriza por un diámetro de 120.5 cm y una altura de 25.4 cm (Figura 2.3.). Debe colocarse de forma tal que quede rodeado de un pasto corto en un radio de 50 m y llenarse hasta 5 cm desde su borde, evitando que el nivel baje más allá de 7.5 cm por debajo del mismo.

Enterrados: Este tipo de tanques es menos sensible a la temperatura de las paredes; sin embargo, lo es a variaciones de la radiación solar. El borde se encuentra 12 cm por encima del suelo. Como desventajas pueden mencionarse su difícil reposición y limpieza, así como el error que ocasionan las gotas de lluvia y los sedimentos **(Figura 2.4.)**.

Figura 2.4. Tanques de evaporación enterrados (Allen, 2006)

Flotantes: Se emplean para medir la evaporación de grandes extensiones de agua; por ejemplo, lagos y ríos. Están elevados sobre la superficie del agua a una distancia de 7 a 10 cm. Si bien están diseñados para obtener mediciones más precisas, asimilándolas a las condiciones reales, presentan como desventajas las lecturas falseadas por el viento, el oleaje y la inestabilidad del tanque, así como dificultades propias del amarre del mismo.

Otro instrumento a tener en cuenta para calcular la evaporación son los psicrómetros **(Figura 2.5.)**. Estos son instrumentos de medición de la humedad específica (la medida se realiza, en forma simultánea, a dos alturas diferentes), que es una variable involucrada en algunos métodos.

Figura 2.5. Diferentes modelos de psicrómetros (INIA, 2019)

2.5. Métodos de Estimación

Ahora nos centraremos en los métodos de estimación de la evaporación de acuerdo con la siguiente clasificación: Métodos teóricos, que se fundamentan en los principios de conservación de la materia y la energía; métodos semiempíricos, que relacionan la evaporación con algunos factores que influyen en el fenómeno y engloban los demás en coeficientes empíricos; métodos combinados, que involucran elementos de los métodos de balance energético y transferencia de masa.

2.5.1. Métodos Teóricos

Dentro de los métodos teóricos, los ampliamente utilizados son conocidos como método de "balance hídrico" y método de "balance energético".

2.5.1.1.Balance Hídrico. Este método asume que toda la fase de transporte de agua relevante puede evaluarse para un periodo de tiempo Δt y expresarse en término de volúmenes. La evaporación puede calcularse, entonces, de la siguiente manera:

$$Ev = Pr + O_h - O_d - I - \Delta S \tag{2.1}$$

Donde:

Ev = Evaporación. $O_h =$ Flujo hacia el reservorio. $O_d =$ Flujo desde el reservorio. I = Infiltración. $\Delta S =$ Variación del almacenamiento. Pr = Precipitación (considerada la que cae directamente sobre el reservorio).

Todos los términos de esta ecuación están referidos a un periodo de tiempo Δ_t y suelen expresarse en unidades de volumen. La mayoría de ellos pueden evaluarse directamente, aunque suelen estar muy alejados de la realidad al existir una gran probabilidad de error en la medición.

La dificultad en medir la infiltración neta, generalmente, restringe este método a áreas con nula o escasa infiltración. Pese a esta limitación se ha visto que este método es muy
confiable bajo ciertas condiciones ideales; este es el caso de la aplicación del mismo a estudios realizados en el lago Hefner (Oklahoma, EE. UU.) por Kohler (1954), que arrojó datos de evaporación con un 10 % de exactitud, 2 de cada 3 veces; sin embargo, las condiciones de este lago son muy selectivas, y este mismo comportamiento no es esperable en circunstancias típicas.

- Primer ejemplo:

Para un mes dado, un lago de 1.5 km^2 que tiene una entrada de $0.5 \text{ m}^3/\text{s}$, una salida de $0.3 \text{ m}^3/\text{s}$ y un incremento de almacenamiento total de 0.1 km^2 -m. Un pluviómetro cercano al lago registró una precipitación total de 50 mm para el mes. Asumiendo que la infiltración es insignificante, determinar las pérdidas por evaporación sobre el lago.

Solución:

La ecuación del balance hídrico puede plantearse de la siguiente manera:

 $E = I - O + P - \Delta S$; donde *E* es la evaporación, *I* representa el caudal de ingreso, *O* el caudal de salida, *P* la precipitación y ΔS = variación del almacenamiento. Por lo tanto, debemos poner todos los términos físicos en las mismas unidades para utilizar la ecuación de balance; será conveniente uniformizar unidades en mm/mes:

$$I = \frac{(0.5m^3/s)(1km^2/10^6m^2)(3600s/h)(24h/d)(30 \ d/mes)(1mes)}{1.5km^2} = 0.864 \ m$$
$$O = \frac{(0.3m^3/s)(1km^2/10^6m^2)(3600s/h)(24h/d)(30 \ d/mes)(1mes)}{1.5km^2} = 0.5184 \ m$$
$$P = 50.0 \ mm$$
$$\Delta S = \frac{0.1km^2 - m}{1.5km^2} = 0.0667 \ m = 66.7 \ mm$$

Finalmente, reemplazamos los valores en la ecuación de balance y tenemos:

- Segundo ejemplo:

Para un año dado, una cuenca con un área de 2500 km^2 recibe 130 cm de precipitación. El caudal promedio medido a la salida de la cuenca fue de 30 m³/s. Estimar la cantidad de pérdida de agua debido al efecto combinado de evaporación, transpiración e infiltración. Calcular la escorrentía superficial en cm ¿Cuál es el coeficiente de escorrentía?

Solución:

La ecuación de balance hídrico para la cuenca en estudio se escribe de la siguiente manera:

 $ET+G=P+R-\Delta S$; donde ET es la evaporación combinada con la transpiración, G representa el flujo subterráneo, P la precipitación, R el escurrimiento superficial y ΔS = variación del almacenamiento. Asimismo, asumiremos que los niveles de agua para t=0 y t=1 son iguales; por lo tanto, $\Delta S=0$.

$$R = \frac{(30m^3/s)(86400s/dia)(365 \ dias/año)(100 \ cm/m)}{(2500 \ km^2)(1000m/km)^2} = 37.9 \ cm/m^2$$

Las pérdidas por evaporación, más infiltración y transpiración, serán:

$$ET + G = 130cm - 37.9cm = 92.1cm$$

El coeficiente de escorrentía es:

$$C_{\varphi} = \frac{R}{P} = \frac{37.9cm}{130cm} = 0.29 = 29\%$$

2.5.1.2.Balance Energético. Durante el proceso de evaporación se producen significativos intercambios de energía en la superficie evaporante. Del balance de estos intercambios resulta el método de balance energético que permite expresar a la evaporación como sigue (Djaman et al., 2017):

$$Ev = \frac{(Q_s(1-A) - Q_b + Q_n - Q_{\Delta S})}{\delta x l_v x (1+B)}$$
(2.2)

Donde:

 Q_s = Radiación global sobre la superficie.

 Q_b = Pérdida de radiación de onda larga por el cuerpo de agua.

 Q_n = Energía neta que llega al agua por medio de nieve, lluvia y formas similares.

 $Q_{\rm AS}$ = Incremento en la energía almacenada en el cuerpo de agua.

d = Densidad del agua.

 l_v = Calor latente de vaporización.

B = Coeficiente de Bowen.

A = Albedo.

El albedo es la relación entre la radiación que una superficie refleja y la radiación que incide sobre la misma. Una superficie muy reflectiva tendrá un albedo cercano a la unidad, mientras que una superficie poco reflectiva tendrá un albedo cercano a cero. En condiciones hipotéticas, si una superficie de agua se comportara como un cuerpo negro (esto es A=0), la absorción de la radiación y, por consiguiente, la evaporación, serían máximas. En condiciones reales, generalmente, el albedo de las superficies de agua no supera el valor de 0.1.

Las cantidades Q_s y Q_b pueden medirse con radiómetros, mientras que Q_a puede determinarse midiendo volúmenes y temperaturas del agua fluyendo hacia y desde el cuerpo de agua, y $Q_{\Delta s}$ puede evaluarse con medidas periódicas de la temperatura del agua.

Finalmente, una expresión para el coeficiente de Bowen es la siguiente (Bowen, 1926):

$$B = \gamma \frac{(T_s - T_a)}{(e_s - e_a)} \times \frac{P}{1000}$$
(2.3)

Donde:

 γ = Constante psicrométrica.

 T_s = Temperatura superficial del agua.

 T_a = Temperatura del aire adyacente al cuerpo de agua.

P = Presión atmosférica.

 e_s = Tensión de vapor de saturación a la temperatura de la superficie del agua.

 e_a = Tensión de vapor de la capa de aire adyacente al agua. Siendo:

 $(e_s - e_a) = \text{Déficit higrométrico.}$

En la ecuación (2.3), los términos que corresponden a presión y tensión se expresan, generalmente, en unidad de milibares (mb), mientras que las temperaturas se expresan en grados centígrados (°C) y la constante como 0.66 mb/°C.

Si solo se considera la radiación neta $(Q_n = Q_s - Q_r - Q_b)$, como toda la tasa de radiación absorbida por la evaporación, tenemos:

$$E = \frac{Q_n}{\rho l_v} \tag{2.4}$$

- Primer ejemplo:

Utilizando el método de balance de energía, calcule la tasa de evaporación desde una superficie libre de agua si la radiación neta es de 200 W/m^2 y la temperatura del aire es 25°C, suponiendo que no existen campos de flujo de calor sensible o de calor del suelo.

Solución:

El calor latente de vaporización puede obtenerse a partir de la Tabla 2.2. para una temperatura de 25°C, l_v =583.2 cal/g=583.2/0.2388 J/g=2442.2 x 10³ J/kg. La densidad del agua a 25 °C es 997 kg/m³; reemplazando en la ecuación (2.4) tenemos:

$$E = \frac{Q_n}{\rho l_v} = \frac{200}{2442.2x10^3 x997} = 8.21x10^{-8}x1000x86400 = 7.10 \ mm/dia$$

2.5.2. Métodos Semiempíricos

Se han hecho múltiples intentos por correlacionar la evaporación con ciertos factores meteorológicos que influyen directamente sobre los dos medios intercambiantes (aire y agua) con la dificultad añadida de que estos factores son dependientes entre sí. En función de la capacidad atmosférica de admitir vapor de agua y la posibilidad de evaporación, Dalton (1802) formuló la siguiente expresión:

$$EV = K(e_s - e_a) \tag{2.5}$$

Donde:

K = Coeficiente ajustable según la influencia de otros factores. Los parámetros restantes ya fueron definidos anteriormente. Esto significa que la evaporación es proporcional al déficit higrométrico. La formulación de esta ecuación se considera, al igual que la expresión de Bowen, un hito en la historia de la hidrología, ya que constituyó la primera expresión para calcular la evaporación. Existen diferentes expresiones, frecuentemente, usadas para estimar la evaporación (basadas en la relación de Dalton). A continuación, revisamos algunas:

2.5.2.1.Fitzgerald (1886). Este investigador establece una fórmula para la evaporación citada por Hager (2015). La fórmula fue escrita de la siguiente forma:

$$EV = (0.4 + 0.124V)(e_s - e_a)$$
(2.6)

Donde:

E = Evaporación (mm/día).

 $e_s, e_a = \text{mm Hg}.$

V = Velocidad del viento sobre la superficie evaporante (km/h).

2.5.2.2.Lugeon (1996). El autor propone una fórmula utilizando la temperatura y presión.

$$EV = 0.39(e_s - e_a)\frac{273 + T}{273}\frac{760}{P - e_s}$$
(2.7)

Donde:

T = Temperatura media diaria.

2.5.2.3. Rohwer (1931). Propone la siguiente ecuación para calcular la evaporación en función de la tensión de vapor actual, a saturación y la velocidad de viento sobre la superficie terrestre.

$$EV = 0.497(1 - 0.0005P)(1 + 0.6V_o)(e_s - e_a) \quad (2.8)$$

2.5.2.4.Harbeck (1962). La ecuación que propone calcular la evaporación en función de la tensión de vapor actual, a saturación y la velocidad de viento a 4 m sobre la superficie terrestre es:

$$EV = 0.0728 V_4 (e_s - e_a)$$
 (2.9)

*V*4 = Velocidad del viento sobre la superficie evaporante a 4 m.

2.5.2.5.Meyer (1915). Propone la siguiente ecuación para calcular la evaporación en función de la tensión de vapor actual, a saturación y la velocidad de viento a 2.5 m sobre la superficie terrestre y un coeficiente C_{M} , denominado coeficiente de Meyer.

$$EV = C_M(1 + 0.06V_{2.5})(e_s - e_a)$$
 (2.10)

Donde:

 $C_{\scriptscriptstyle M}$ = Coeficiente de Meyer (el autor aconsejó que el coeficiente que lleva su nombre tome el valor 15 para estudios en superficies evaporantes pequeñas, tales como los tanques de evaporación, y 11 cuando las superficies son más grandes y profundas).

 $V_{2.5}$ = Velocidad del viento sobre la superficie evaporante a 2.5 m.

2.5.2.6. Servicios Hidrológicos de la Antigua URSS (1996). Custodio & Llamas proponen la siguiente fórmula.

$$EV = 0.2 d_m (1 + 0.0072 V_2) (e_s - e_a)$$
(2.11)

Donde:

 e_s , e_a = Milibares. V_2 = Velocidad del viento sobre la superficie evaporante a 2 m (m/s).

 $d_m = N$ úmero de días del mes.

2.5.2.7.Chistianssen y Guillén. Proponen la siguiente fórmula para calcular la evaporación.

$$EV = 2.957 C_T C_H C_W C_S C_{DP} C_M$$
 (2.12)

 $C_{\rm H} = 2.12 - 1.75 \, {\rm H}^2$

H = Humedad relativa promedio mensual.

 $C_T = -0.490 + 0.0621 T$

T = Temperatura media mensual (°C).

 $C_s = 0.53 + 0.784 S$

S = Insolación media mensual.

 $C_{W} = 0.728 + 0.0494 V_{2}$

 V_2 = Velocidad del viento a 2 m de la superficie del agua (km/h).

$$C_{DP} = 1.15 - 0.015 D_{P}$$

 D_p = Número de días de precipitación durante el mes considerado, con precipitaciones de 1 mm o mayores.

 C_{M} = Coeficiente que es función del mes y viene dado por la siguiente tabla:

Tabla 2.1.							
Coeficiente С _м por mes, Hager ((2015))					

MES	C _M	MES	C _M
Enero	0.991	Julio	1.033
Febrero	1.035	Agosto	0.997
Marzo	1.036	Septiembre	0.961
Abril	1.065	Octubre	0.947
Mayo	1.038	Noviembre	0.925
Junio	1.045	Diciembre	0.968

2.5.2.8.Lago Hefner. En este caso se propone la siguiente ecuación para calcular la evaporación en función de la tensión de vapor actual, a saturación y la velocidad de viento a 2 m sobre la superficie terrestre.

$$EV = 0.012V_2(e_s - e_2) \tag{2.13}$$

2.5.2.9.Lago Mead. Esta ecuación es similar a la anterior, usa los mismos parámetros y su coeficiente es muy similar.

$$EV = 0.0118V_2(e_s - e_2) \tag{2.14}$$

EV = Evaporación (cm/día).

*e*_s = Presión de saturación de vapor en la superficie (milibares).

 e_2 = Presión de saturación de vapor a 2 m de la superficie (milibares).

 V_2 = Velocidad del viento sobre la superficie evaporante a 2 m (m/s).

2.5.2.10. Ven Te Chow. Este autor propone la siguiente ecuación para calcular la evapotranspiración. Los parámetros que intervienen se listan a continuación.

$$EV = \frac{0.622k^2\rho_{\alpha}V_2}{P\rho\left[ln\left(\frac{Z_2}{Z_0}\right)\right]^2}(e_s - e_{\alpha})$$
(2.15)

Donde:

EV = Evaporación (m/s).

 e_s = Presión de saturación de vapor en la superficie (milibares; Pa).

 e_2 = Presión de saturación del aire (milibares; Pa).

 ρ_a = Densidad del aire (kg/m³).

 ρ = Densidad del agua (kg/m³).

k = Constante de Von Karman = 0.4.

 V_2 = Velocidad del viento sobre la superficie evaporante a 2 m (m/s).

P = Presión del aire (milibares; Pa).

 z_o = Altura de rugosidad (m).

 z_2 = Altura donde se efectúan las mediciones (2 m).

Podemos utilizar una relación entre velocidad de viento y altura, donde *V* es la velocidad promedio de viento a la altura *z* y V_o es la velocidad de viento a la altura z_o ; *k* varía con la rugosidad de la superficie y estabilidad atmosférica entre 0.1 y 0.6.

$$\frac{V}{V_o} = \left(\frac{z}{z_o}\right)^k \tag{2.16}$$

Los tres primeros procedimientos han sido utilizados para determinar la evaporación, tanto a escala diaria como mensual (ingresando datos diarios y medios mensuales respectivamente), mientras que los dos últimos se han usado, únicamente, en cálculos de evaporación mensual.

- Primer ejemplo:

Estimar la evaporación media para el mes de abril por medio de las ecuaciones que sean posibles de aplicar, según la siguiente data: Temperatura media mensual = 26.9 °C. Ubicación 2°46'latitud sur. Velocidad de viento a 2 m, sobre la superficie del agua = 10 Km/h. Insolación 80 %. N.° de días de lluvia = 26, Humedad relativa = 88 % y coeficiente de reflexión = 30 %.

Solución:

La fórmula de Fitzgerald

 $EV = (0.4 + 0.124V)(e_s - e_a)$

V = Velocidad del viento sobre la superficie evaporante. Calculando e_s para T = 26.9 °C... usamos la Tabla 2.2. Interpolando con datos de la Tabla 2.2. para T = 25 °C y $e_s = 23.76$ mm Hg, para T = 30 °C y $e_s = 31.83$ mm Hg. Por lo tanto, para T = 26.9 °C, $e_s = 26.8266$ mm Hg = 1.056 in Hg $e_a = e_s x HR = 26.8266 x 0.88 = 23.6074$ mm Hg = 0.929 in Hg

Temp.	Densidad	Calor de	Visco	osidad	Presión d		or
(°C)	(g/cm ³)	vaporización (cal/g)	Absoluta (cp)	Cinemática (cs)	(mm Hg)	(mb)	(g/cm ²)
0	0.9998	597.3	1.790	1.790	4.58	6.11	6.23
5	0.9999	594.5	1.520	1.520	6.54	8.72	8.89
10	0.9997	591.7	1.310	1.310	9.20	12.27	12.51
15	0.9991	588.9	1_140	1.140	12.78	17.04	17.38
20	0.9982	586.0	1.000	1.000	17.53	23.37	23.83
25	0.9971	583.2	0.890	0.893	23.76	31.67	32.30
30	0.9956	580.4	0.798	0.801	31.83	42.43	43.27
35	0.9940	577.6	0.719	0.723	42.18	56.24	57.34
40	0.9922	574.7	0.653	0.658	55.34	73.78	75.23
50	0.9880	569.0	0.547	0.554	92.56	123.40	125.83
60	0.9832	563.2	0.466	0.474	149.46	199.26	203.19
70	0.9777	557.4	0.404	0.413	233.79	311.69	317.84
80	0.9718	551.4	0.355	0.365	355.28	473.67	483.01
90	0.9653	545.3	0.315	0.326	525.89	701.13	714.95
100	0.9584	539.1	0.282	0.294	760.00	1013.25	1033.23

 Tabla 2.2.

 Propiedades físicas del agua en el Sistema Internacional de Unidades (Linsley et al., 1982)

Como dato tenemos: Velocidad de viento a 2 m sobre la superficie es 10 km/h, reemplazamos los valores:

$$EV = \left(0.4 + 0.124x \frac{10km}{h}\right) (26.8266 - 23.6074) mm \, Hg$$

EV= 5.2795 mm/día x 30 días = 158.38 mm/mes

No es posible utilizar las fórmulas de Lugeon y Rohwer, requieren la presión barométrica.

Para aplicar la fórmula de Harbeck requerimos transformar la velocidad, disponemos de V_2 =10 km/h, requerimos V_4 :

$$EV = 0.0728 V_4 (e_s - e_a)$$
$$\frac{V}{V_o} = \left(\frac{z}{z_o}\right)^k \dots \dots \frac{10}{V_4} = \left(\frac{2}{4}\right)^{1.4} \dots \dots V_4 = 26.39 Km/hr$$

EV = 0.0728 (26.39) (26.8266 - 23.6074) = 6.1847 mm/día x 30 días = 185.54 mm/mes.

La fórmula de Meyer es posible aplicarla, para ello requerimos transformar la velocidad de viento a $V_{2,5}$

$$EV = C_M(1 + 0.06V_{2.5})(e_s - e_a)$$

El valor de C_{M} = 15, considerando una superficie evaporante pequeña, tal como lo recomienda el autor.

$$\frac{V}{V_o} = \left(\frac{z}{z_o}\right)^k \dots \dots \frac{10}{V_{2.5}} = \left(\frac{2}{2.5}\right)^{1.4} \dots \dots V_4 = 13.67 \frac{Km}{hr} = 8.544 \text{ millas/hr}$$

EV = 15 (1+0.06x8.544) (1.056 - 0.929) = 2.87 in/mes=73.04 mm/mes.

Servicios hidrológicos de la antigua URSS

 $EV = 0.2 d_m (1 + 0.0072 V_2) (e_s - e_a)$

Tenemos, V2 = 10 Km/h = 2.78 m/s y dm = 30 (abril) $e_s = 26.8266 \text{ mm Hg} = 1.056 \text{ in Hg} = 35.7658 \text{ milibares.}$ $e_a = 23.6074 \text{ mm Hg} = 0.929 \text{ in Hg} = 31.4739 \text{ milibares.}$ EV = 0.2 (30) (1+0.0072 x 2.78) (35.7658 - 31.4739) = 26.27 mm/mes. Chistianssen y Guillén

$$EV = 2.957 C_T C_H C_W C_S C_{DP} C_M$$

Para la aplicación de esta fórmula debemos calcular antes: $C_{H} = 2.12 \cdot 1.75 \text{ H}2 = 2.12 \cdot 1.75 (0.88) = 0.77$ H = Humedad relativa promedio mensual. $C_{T} = -0.490 + 0.0621 T = -0.490 + 0.0621(26.9) = 1.18$ T = Temperatura media mensual (°C). $C_{s} = 0.53 + 0.784 S = 0.53 + 0.784 (0.80) = 1.16$ S = Insolación media mensual. $C_{W} = 0.728 + 0.0494 V_{2} = 0.728 + 0.0494 (10) = 1.22$ V2 = Velocidad del viento a 2 m de la superficie del agua (km/h). $C_{DP} = 1.15 - 0.015 D_{p} = 1.15 - 0.015 (26) = 0.76$ $D_{p} =$ Número de días de precipitación durante el mes considerado, con precipitaciones de 1 mm o mayores. $C_{M} =$ Coeficiente que es función del mes y viene dado por la Tabla 2.1. = 1.065

EV = (2.957)(1.18)(0.77)(1.22)(1.16)(0.76)(1.065) = 3.08mm/día = 92.33 mm/mes.

Las diferencias encontradas deben atribuirse a que estas fórmulas tienen validez local o regional. Se deberá precisar el valor de los coeficientes que ellas contienen por medio de observaciones locales para validarlas.

- Segundo ejemplo:

Calcule la tasa de evaporación de una superficie libre de agua utilizando el método de Ven Te Chow, con una temperatura de 25 °C, con humedad relativa del 40 %, una presión del aire de 101.3 kPa y una velocidad de viento de 3 m/s; todas medidas a una altura de 2 m por encima de la superficie del agua. Suponer una altura de rugosidad de 0.03 cm.

Ven Te Chow

$$EV = \frac{0.622k^2 \rho_a V_2}{P\rho \left[ln \left(\frac{Z_2}{Z_o} \right) \right]^2} (e_s - e_a)$$

De los datos del problema tenemos: *EV* = Evaporación (m/s). e_s = Presión de saturación de vapor en la superficie (milibares; Pa) = 3167.

 e_2 = Presión de saturación del aire (milibares; Pa) = 1267.

 ρ_a = Densidad del aire (kg/m³) = 1.19.

 ρ = Densidad del agua (kg/m³) = 997.

 V_2 = Velocidad del viento sobre la superficie evaporante a 2 m (m/s) = 3.

k = Constante de Von Karman = 0.4.

 $P = Presión del aire (milibares; Pa) = 101.3 \times 10^3$.

 z_0 = Altura de rugosidad (m) = 0.003.

 z_2 = Altura donde se efectúan las mediciones (2 m) = 2.

 $e_s = 3167$ Pa es obtenida de la Tabla 2.2. para 25 °C, luego:

 $e_a = e_s x HR = 3167 \times 0.40 = 1267 Pa.$

$$EV = \frac{0.622k^2 \rho_a V_2}{P\rho \left[ln \left(\frac{Z_2}{Z_o} \right) \right]^2} (e_s - e_a) = \frac{0.622(0.4)^2 (1.19)(3)}{(101.3x 10^3)(997) \left[ln \left(\frac{2}{0.003} \right) \right]^2} (3167 - 1267)$$
$$= 8.62 \times 10^{-8} m/s$$

$$EV = 8.62 \times 10^{-8} \frac{m}{s} = 7.45 \ mm/dia$$

2.5.3.Métodos Combinados

2.5.3.1. Método de Penman (1948). Penman propuso dos formas de calcular la evaporación diaria (E_o) en mm a partir de una superficie libre de agua. La primera de ellas es mediante el uso de un nomograma y la segunda, mediante un balance energético.

Uso del Nomograma:

Para el uso del nomograma se requiere la siguiente información:

t = Temperatura media del aire.

h = Humedad relativa media.

 V_2 = Velocidad media del viento a 2 m de altura.

n/D = Duración relativa de insolación.

n = Duración de insolación efectiva.

D = Duración del día astronómico (desde la salida hasta la puesta del sol).

n/D = 0 (cielo completamente cubierto).

n/D = 1 (cielo completamente despejado).

 R_{A} = Valor de Angot. Es la cantidad de radiación solar, en

calorías por día, en un plano horizontal de 1 cm² entrante en los límites exteriores de la atmósfera. Es una función de la posición geográfica y la época del año **(Tabla 2.3.)**.

LATIDUD SUR	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEPT	ост	NOV	DIC
0°	885	915	925	900	850	820	830	870	905	910	890	875
10°	965	960	915	840	755	710	730	795	875	935	955	960
20°	1020	975	885	765	650	590	615	705	820	930	1000	1025
30°	1050	965	830	665	525	460	480	595	750	900	1020	1065
40°	1055	925	740	545	390	315	345	465	650	840	995	1080
50°	1035	865	640	415	250	180	205	325	525	760	975	1075

Tabla 2.3. Valores de A en cal/(cm²-día) (Monsalve, 1999)

En el nomograma (Figura 2.6.) se encuentra *E*_o como la suma de tres términos:

 $E_0 = E_1 + E_2 + E_3$

Figura 2.6. Nomograma de Penman (Monsalve, 1999)

- Primer ejemplo:

Encontrar el valor de la evaporación E_0 para los siguientes datos: $t = 20 \text{ °C}, n/D = 0.4, h = 0.7, R_A = 550 \text{ cal/(cm²- día)}, V_2 = 5 \text{ m/s}.$

Solución:

El procedimiento gráfico usando el nomograma de Penman, que se muestra en la figura adjunta, permite calcular la evaporación diaria. Para E_1 , en el lado izquierdo, ubicamos en el eje vertical h = 0.7 y trazamos una línea de color marrón punteada hasta pasar por la intersección del diagrama n/D = 0.4 con t = 20 °C y proyectamos dicha intersección hasta el eje E_1 , en este eje marcamos el punto y resulta un valor de -1.0 mm/día.

Para E_2 usamos t = 20 °C con $R_A = 550$ cal/(cm²/día); trazamos una línea de color verde desde R_A hasta el corte de la línea entre ty n/D = 0.4, con lo que resulta un valor para E^2 de 2.3 mm/día.

Por último, para E_3 procedemos de igual manera que en el anterior caso, pero usamos al lado derecho un valor h = 0.7, siendo el resultado de E_3 , 1.9 mm/día.

Con los valores del nomograma procedemos a encontrar E_0 , como la suma de tres términos:

$$E_0 = E_1 + E_2 + E_3 = -1.0 + 2.3 + 1.9 = 3.2 \text{ mm/día}$$

Figura 2.7. Ejemplo de nomograma de Penman (Monsalve, 1999)

- Balance energético:

Los métodos de balance de energía y los de la Ley de Dalton resultan ser caminos alternativos para la estimación de la evaporación de una superficie de agua libre. Penmann (1948) combinó estos dos conceptos para desarrollar una metodología.

El método consiste en escribir la ecuación de balance en términos de energías (en la forma que veremos luego). La cantidad de energía emitida por la superficie radiante está dada por la Ley de Stefan - Boltzmann:

$$R = \sigma T^4 \tag{2.17}$$

Donde:

 $R = \text{Energía en cal/cm}^2$ -día.

 σ = Constante = 117.4 x 10⁻⁹ cal/cm²-día.

T = Temperatura absoluta = 273° + t °C.

La cantidad de energía que alcanza a los límites de la atmósfera se indica por R_A . La cantidad R_c que penetra la atmósfera y alcanza la superficie terrestre es mucho menor que R_A . Se puede estimar mediante la fórmula:

$$R_{\mathcal{C}} = R_A \left(0.2 + 0.48 \frac{n}{D} \right), \qquad \left(\frac{cal}{cm^2 - dia} \right) \qquad (2.18)$$

Una parte de esta energía es reflectada y la cantidad neta R_i retenida por la superficie terrestre es:

$$R_I = R_c (1-r), \left(\frac{cal}{cm^2 - dia}\right) \tag{2.19}$$

Donde *r* es el coeficiente de reflexión. Para superficies de agua su valor es 0.06.

Parte de la radiación neta R_i es reirradiada, día y noche, como radiación R_B . La atmósfera misma irradia hacia arriba y hacia abajo, y las nubes interfieren ambos flujos de radiación. Se ha encontrado, empíricamente, que el flujo neto de radiación saliente puede encontrarse con la fórmula:

$$R_{B} = \sigma T^{4} \left(0.47 - 0.077 \sqrt{e_{a}} \right) \left(0.20 + 0.80 \frac{n}{D} \right) \left(\frac{cal}{cm^{2} - dia} \right)$$

$$\sigma T^{4} = radiación \, de \, Stefan - Boltzmann$$

$$e_{a} = presión \, de \, vapor \, actual \, (mm \, Hg)$$

$$(2.20)$$

La cantidad neta de energía remanente en la superficie, y disponible para varias pérdidas, es el llamado calor almacenado *H*:

$$H = R_I - R_B \tag{2.21}$$

El calor almacenado *H* de un área dada de agua es usado de cuatro maneras:

$$H = E'_{o} + K + \Delta S + A \qquad (2.21)$$

Donde:

 E'_{o} = Calor disponible para la evaporación.

K = Suministro de calor por convección desde la superficie de agua hacia el aire.

 ΔS = Incremento en el calor de la masa de agua.

A = Intercambio de calor con el ambiente.

La ecuación anterior viene a ser la ecuación de balance energético de Penman. Analizaremos cada uno de los términos del segundo miembro.

1.° Se conoce como Ley de Dalton (1802) a la expresión:

$$E_o = c(e_s - e_a)f(u) \tag{2.22}$$

Donde:

c = Constante.

 e_s = Presión de vapor saturado a la temperatura t.

 e_a = Presión de vapor actual a la temperatura t.

f(u) = Función de la velocidad del viento.

En este caso:

$$E_o = c(e'_s - e_a)f(u) \tag{2.23}$$

 e'_{s} =Presión de vapor saturado a la temperatura t' de la superficie que separa el agua del aire.

En términos de calor:

$$E'_{o} = c'(e'_{s} - e_{a})f(u), \text{ donde } c' = 60 \,^{\circ}\text{C}$$

$$(2.24)$$

2.° De la meteorología dinámica se saca la siguiente expresión de *K*:

$$K = \gamma c'(t'-t)f(u) \tag{2.25}$$

Donde:

 γ = Constante psicrométrica (0.49, si *t* está en °C). *t*'= Temperatura de la superficie libre.

3.° Si la temperatura de la masa de agua permanece constante, o el lago es poco profundo, o se consideran periodos cortos de 10 a 20 días, ΔS puede despreciarse.

4.° El valor de *A* es negativo cuando un tanque aislado, lleno con agua, en un desierto caliente y seco, en adición al calor directo en su superficie, recibe también calor en los lados (calor de advección). Se toma como cero cuando el embalse es grande. Estos efectos de borde se pueden despreciar. Reemplazando tenemos:

$$H = E'_{o} + K = R_{I} - R_{B} \tag{2.26}$$

Que viene a ser la ecuación de balance energético resumida. A partir de ella Penman derivó una expresión manejable para calcular E_0 . Penman introdujo aquí dos fórmulas:

$$\Delta = \frac{e_s' - e_s}{t' - t} \tag{2.27}$$

Donde:

e'_s, *e*_s = Son las presiones de vapor saturado a las temperaturas *t*'y *t*, respectivamente.

El valor Δ viene representado por la tangente en la curva de presión de vapor de saturación vs. temperatura:

Figura 2.8. Curva de presión de vapor de saturación vs. temperatura (Monsalve, 1999)

Puesto que t y t' difieren muy poco entre sí y puesto que t' es desconocido, se puede usar para a la pendiente de la tangente a la curva en la abscisa t. Esto se puede calcular directamente de la tabla estándar de valores e_s **(Tabla 2.4.)**.

La segunda fórmula es la expresión semiempírica, que da la evaporación desde la superficie del agua para el caso hipotético en que las temperaturas del aire (t) y de la superficie del agua (t') sean iguales. E_a viene expresada en mm/día, e_s y e_a en mm de Hg.

$$E_a = 0.35(e_s - e_a)(0.5 + 0.54V_2)$$
(2.28)

En términos de calor: $E'a = 60 E_a$

$$E'_{\alpha} = 21(e_s - e_{\alpha})(0.5 + 0.54V_2)$$
(2.29)

Resumiendo, tenemos cuatro ecuaciones (2.23, 2.25, 2.26 y 2.27) con cuatro incógnitas (e'_s, t', E'_o, K). Hay que eliminar $e'_s, t', y K$ para así despejar E'_o . Proceso que se hace de la siguiente manera:

Dividiendo la ecuación (2.25) entre la ecuación (2.24) resulta una relación conocida como de Bowen (1926).

$$\frac{K}{E'_{o}} = \gamma \frac{t'-t}{e'_{s}-e_{a}}$$
(2.30)

Finalmente, con las respectivas sustituciones llegamos a:

$$E'_{o} = \frac{\Delta H + \gamma E'_{a}}{\Delta + \gamma}$$
(2.30)

Donde E'_{o} , $Hy E'_{a}$ están expresados en cal/cm²-día. Dividiendo estos valores entre 60 se obtiene E_{0} , H^{*} y E_{a} en mm/día.

t	0	.1	.2	.3	.4	.5	.6	.7	.8	.9
10	2.15	0.00000000			A. Secondaria	10000000000000000000000000000000000000		10-01-00-00 00-00-00	111-5311322	ele ante alle activitation
9	2.32	2.30	2.29	2.27	2.26	2.24	2.22	2.21	2.19	2.17
8	2.51	2.49	2.47	2.45	2.43	2.41	2.40	2.38	2.36	2.34
7	2.71	2.69	2.67	2.65	2.63	2.61	2.59	2.57	2.55	2.53
6	2.93	2.91	2.89	2.86	2.84	2.82	2.80	2.77	2.75	2.73
5	3.16	3.14	3.11	3.09	3.06	3.04	3.01	2.99	2.97	2.95
5	3.41	3.39	3.37	3.34	3.32	3.29	3.27	3.24	3.22	3.18
3	3.67	3.64	3.62	3.59	3.57	3.54	3.52	3.49	3.45	3.44
z	3.97	3.94	3.91	3.88	3.85	3.82	3.79	3.76	3.73	3.70
1	4.26	4.23	4.20	4.17	4.14	4.11	4.08	4.05	4.03	4.00
U	4.58	4.55	4.52	4.49	4.46	4.43	4.40	4.36	4.33	4.29
0	4.58	4.62	4.65	4.69	4.71	4.75	4.78	4.82	4.86	4.89
1	4.92	4.96	- 5.00	5.03	5.07	5.11	5.14	5.18	5.21	5.25
4	5.29	5.33	5.3/	5.40	5.44	5.48	5.53	5.5/	5.60	5.64
3	6 10	5.16	5./0	5.80	5.84	5.89	5.93	5.9/	6.01	6.00
2	6 64	6 50	6.63	6.60	6 72	6 77	6 02	6.40	6.01	6.06
6	7 01	7.06	7 11	7 16	7 20	7 25	7 21	7 26	7 41	7 46
7	7 51	7.56	7 61	7 67	7 72	7 77	7 82	7.00	7 03	7 00
8	8 04	8 10	8 15	8 21	8 26	8 32	8 37	8 43	8 48	8 54
ă	8.61	8.67	8.73	8.78	8 84	8.90	8.96	9.02	9 08	9 14
10	9.20	9.26	9.33	9.39	9.46	9.52	9.58	9.65	9.71	9.77
11	9.84	9,90	9,97	10.03.	10.10	10.17	10.24	10.31	10.38	10.45
12	10.52	10.58	10.66	10.72	10.79	10.86	10.93	11.00	11.08	11.15
13	11.23	11.30	11.38	11.46	11.53	11.60	11.68	11.76	11.83	11.91
14	11.98	12.06	12.14	12.22	12.30	12.38	12.46	12.54	12.62	12.70
15	12.78	12.86	12.95	13.03	13.11	13.20	13.28	13.37	13.45	13.54
16	13.63	13.71	13.80	13.90	13.99	14.08	14.17	14.26	14.35	14.44
17	14.53	14.62	14.71	14.80	14.90	14.99	15.09	15.17	15.27	15.38
18	15.46	15.56	15.66	15.76	15.86	15.96	16.06	16.16	16.26	16.36
19	16.46	16.57	16.68	16.79	16.90	17.00	17.10	17.21	17.32	17.43
20	17.53	17.64	17.75	17.86	17.97	18.08	18.20	18.31	18.43	18.54
21	18.65	18.77	18.88	19.00	19.11	19.23	19.35	19.46	19.58	19.70
22	19.82	19.94	20.06	20.19	20.31	20.43	20.58	20.69	20.80	20.93
23	21.05	21.19	21.32	21.45	21.58	21.71	21.84	21.97	22.10	22.23
24	22.27	22.50	22.63	22.76	22.91	23.05	23.19	23.31	23.45	23.60
25	23.75	23.90	24.03	24.20	24.35	24.49	24.64	24.79	24.94	25.08
26	25.31	25.45	25.60	25.74	25.89	26.03	26.18	26.32	26.46	26.60
27	26.74	26.90	27.05	27.21	27.37	27.53	27.69	27.85	28.00	28.16
28	28.32	28.49	28.66	28.83	29.00	29.17	29.34	29.51	29.68	29.85
29	30.03	30.20	30.38	30.56	30.74	30.92	31.10	31.28	31.46	31.64
30	31.82	32.00	32.19	32.38	32.57	32.76	32.95	33.14	33.33	33.52

 Tabla 2.4.

 Tensión de vapor de saturación es en mm H_a (Monsalve, 1999)

- Segundo ejemplo:

Encontrar el valor de la evaporación E_0 para los siguientes datos: t = 20 °C, n/D = 0.4, h = 0.7, $R_A = 550$ cal/(cm²-día), $V_2 = 5$ m/s.

Solución:

Empezamos con t = 20 °C, tendremos: $e_s = 17.53$ mm Hg $e_a = h \ge e_s = 0.7 \ge 17.53 = 12.27$ mm Hg $e_s - e_a = 17.53 - 12.27 = 5.26$ mm Hg T = 20 + 273 = 293 K

$$\Delta = \frac{e_s' - e_s}{t' - t}$$

Usando la Tabla 2.4., tenemos:

 $e'_{s}(t=20.05) = 17.585$ $e_{s}(t=19.95) = 17.480$

Entonces:

$$\Delta = \frac{e_s' - e_s}{t' - t} = \frac{(17.585 - 17.480)}{20.05 - 19.95} = 1.05$$

tenemos Δ =1.05 R_A =550 cal/cm²-día

$$\begin{aligned} R_{C} &= R_{A} \left(0.2 + 0.48 \frac{n}{D} \right) = 550(0.2 + 0.48x0.4) = 215.60 \left(\frac{cal}{cm^{2} - dia} \right) \\ R_{I} &= R_{C} (1 - r) = 215.60(1 - 0.06) = 202.66 \left(\frac{cal}{cm^{2} - dia} \right), r = 0.06 \\ \text{superficies de agua} \end{aligned}$$

$$\begin{split} R_B &= \sigma T^4 \big(0.47 - 0.077 \sqrt{e_a} \big) \Big(0.20 + 0.80 \frac{n}{D} \big) \\ &= 117.4 \times 10^{-9} (293^4) \big(0.47 - 0.077 \sqrt{12.27} \big) (0.20 + 0.8 \times 0.4) \\ &= 91.0 \left(\frac{cal}{cm^2 - dia} \right) \\ H &= E'_o + K = R_I - R_B = 202.66 - 91.0 = 111.66 \left(\frac{cal}{cm^2 - dia} \right) \\ E'_a &= 21(e_s - e_a) (0.5 + 0.54V_2) = 21(17.53 - 12.27) (0.5 + 0.54 \times 5) \\ &= 353.5 \left(\frac{cal}{cm^2 - dia} \right) \end{split}$$

$$E'_{o} = \frac{\Delta H + \gamma E'_{a}}{\Delta + \gamma} = \frac{(1.05)(111.66) + (0.49)(353.5)}{1.05 + 0.49} = 188.61 \left(\frac{cal}{cm^{2} - dia}\right) \left(\frac{1}{60}\right)$$
$$= 3.14 \ mm/dia$$

El valor final de evaporación es de 3.14 mm/día.

2.6. Evaporación desde Suelo Húmedo

Las superficies líquidas permanentes cubren, en general, una parte muy pequeña de las cuencas hidrográficas; de tal forma que la evaporación de los suelos y la transpiración de las plantas son los factores que condicionan verdaderamente la evapotranspiración de una cuenca.

Salvo los suelos particularmente porosos o con fisuras, la evaporación solo ocurre a partir de la superficie húmeda del suelo y de una reducida capa próxima a ella. La evaporación tiende a disminuir la humedad de esa capa y provoca un movimiento ascendente del agua almacenada en las capas subyacentes para reaprovisionar la superficie y alimentar la evaporación.

En ausencia de esa realimentación, y en ausencia de lluvias, la humedad decrece progresivamente en las capas superficiales que, finalmente, se secan totalmente; en ese momento se detiene la evaporación; sin embargo, queda en el suelo humedad remanente (de 2 a 5 % en volumen) llamada humedad higroscópica, que no puede ser extraída por evaporación.

La evaporación del agua del suelo es un proceso de gran importancia en el ciclo hidrológico por su papel regulador térmico en la atmósfera y por la pérdida del recurso desde un depósito tan accesible para el hombre como es el suelo.

A continuación, presentamos algunos métodos posibles de aplicar:

2.6.1.Fórmula de Turc

Innumerables mediciones de evaporación han sido efectuadas en diversos tipos de suelo, sujetas a climas extremadamente variables y con diferentes condiciones de humedad, conduciendo a fórmulas como la de Turc, del Centro Nacional de Investigaciones Agronómicas de Francia, que proporciona la medida de la evaporación de suelos desnudos normales, sujeta a la humedad producida por la lluvia para periodos de 10 días.

$$E = \frac{P+a}{1+\left(\frac{P+a}{L}\right)^2} \tag{2.31}$$

E = Evaporación correspondiente a 10 días (mm).

P = Precipitación correspondiente a 10 días (mm).

a = Cantidad de agua susceptible de ser evaporada en 10 días, seguida a las precipitaciones; varía de 10 mm (suelo húmedo) hasta 1 mm (suelo seco).

L = Factor helio-térmico dado por:

$$L = \frac{1}{16} \left(T + 2 \sqrt{R_g} \right)$$

T = Temperatura media del aire (°C).

 R_a = Radiación solar global en el periodo considerado (cal/cm²).

CAPÍTULO III: EVAPOTRANSPIRACIÓN

3.1. Aspectos Generales

La evaluación precisa de la evapotranspiración es fundamental para la gestión eficiente de los recursos hídricos, para el diseño y la gestión de depósitos de suministro de agua, para el diseño y la programación de sistemas de riego y para la evaluación ambiental (Corbari et al., 2017).

En condiciones naturales, la evaporación y la transpiración son fenómenos interdependientes. La pérdida de agua producida a causa de estos dos procesos se engloba bajo el concepto de evapotranspiración (ET). El fenómeno de evapotranspiración desprende dos conceptos: Evapotranspiración potencial y evapotranspiración real o actual.

Evapotranspiración potencial es la pérdida del agua por evapotranspiración en un terreno extenso con vegetación verde, baja, en pleno desarrollo, cubriendo totalmente el suelo, de altura uniforme y sin sufrir deficiencia de humedad (humedad del suelo cercana a la capacidad de campo).

Evapotranspiración real o actual, conocida también como uso consuntivo, es la pérdida de agua por evaporación y transpiración en las condiciones atmosféricas y de humedad del suelo actuales, reinantes.

Las tensiones de vapor se expresan en unidades de mm Hg, la velocidad del viento en m/s y la radiación en mm/día. De esta manera, el dato de evaporación se obtiene en unidades de mm/día. A lo largo de los años se han propuesto numerosas modificaciones a la ecuación original de Penman. Es así que el Servicio Nacional de Clima de los EE. UU. empleó una variante de dicha ecuación para desarrollar correlaciones que permitieran estimar la evaporación. Los datos requeridos por esta modificación son la temperatura media del aire, el punto de rocío, la velocidad diaria del viento y la radiación solar.

En los últimos años se ha encontrado un enfoque novedoso para estimar la temperatura de la superficie de equilibrio (T_e) de la evaporación del ambiente húmedo (E_w), diariamente. El empleo de esta temperatura en la ecuación de Priestley-Taylor, así como el cálculo de la pendiente de la curva de presión de vapor de saturación con mediciones de tanque clase A, mejoró la precisión de la estimación de la evaporación media (E) (Szilagyi & Jozsa, 2008).

Según Walker (1984), las mediciones simultáneas de la radiación neta y la evaporación de la superficie del suelo debajo de las copas de maíz se realizaron durante periodos de 24 horas, durante los cuales la superficie del suelo permaneció húmeda. Estas mediciones mostraron que la evaporación de la superficie del suelo, a menudo, excedía el suministro de energía radiante, lo que indicaba un flujo descendente de calor sensible. Este efecto fue mayor debajo de un dosel más denso. Los resultados sugieren que los métodos empíricos de estimación de la evaporación, desde la superficie del suelo debajo de un dosel, pueden no tener éxito en condiciones donde la evaporación depende sustancialmente del calor producido en el dosel y transportado a la superficie del suelo.

3.2. Concepto de Evapotranspiración

Para definir evapotranspiración, primero definiremos transpiración, que consiste en la vaporización del agua líquida contenida en los tejidos de la planta y su posterior remoción hacia la atmósfera. Los cultivos pierden agua predominantemente a través de los estomas; estos son pequeñas aberturas en la hoja de la planta, a través de las cuales atraviesan los gases y el vapor de agua de la planta hacia la atmósfera **(Figura 3.1.)**. El agua, junto con algunos nutrientes, es absorbida por las raíces y transportada a través de la planta. La vaporización ocurre dentro de la hoja, en los espacios intercelulares, y el intercambio del vapor con la atmósfera es controlado por la abertura estomática. Casi toda el agua absorbida del suelo se pierde por transpiración y, solamente, una pequeña fracción se convierte en parte de los tejidos vegetales.

Del agua que una planta absorbe del suelo, solo una parte muy pequeña se queda para formar los tejidos de la planta; el resto regresa a la atmósfera en forma de vapor, configurando la transpiración. Este fenómeno de la transpiración constituye una fase muy importante del ciclo hidrológico, porque es el mecanismo principal por medio del cual el agua precipitada a tierra regresa a la atmósfera.

Según Allen et al. (1998), la evaporación y la transpiración ocurren simultáneamente y no hay una manera fácil de distinguir entre los dos procesos. Además de la disponibilidad de agua en la capa superior del suelo, la evaporación de un suelo cultivado se determina, principalmente, por la fracción de la radiación solar que llega a la superficie del suelo; esta fracción disminuye durante el periodo de crecimiento y a medida que el cultivo se desarrolla y el dosel de cultivo sombrea cada vez más el área del suelo. Cuando el cultivo es pequeño, el agua es predominantemente perdida por la evaporación del suelo, pero una vez que el cultivo está bien desarrollado y cubre completamente el suelo, la transpiración se convierte en el proceso principal. En la Figura 3.2. la partición de la evapotranspiración en evaporación y transpiración se traza en correspondencia con el área de la hoja por unidad de superficie de suelo debajo de ella. Al sembrar, casi el 100 %, la *ET* proviene de la evaporación, mientras que en la cobertura de cultivo completa más del 90 % de *ET* proviene de la transpiración.

La evapotranspiración se expresa, normalmente, en milímetros (mm) por unidad de tiempo. Esta unidad expresa la cantidad de agua perdida de una superficie cultivada en unidades de altura de agua. La unidad de tiempo puede ser una hora, día, 10 días, mes o incluso un completo periodo de cultivo o un año. Como una hectárea tiene una superficie de 10 000 m² y 1 milímetro es igual a 0.001 m, una pérdida de 1 mm de agua corresponde a una pérdida de 10 m³ de agua por hectárea; es decir, 1 mm/día es equivalente 10 m³/ha-día.

3.2.1. Evapotranspiración Potencial

El concepto de evapotranspiración potencial (ETP) fue definido por Thornthwaite (1948) como el máximo de evapotranspiración que depende únicamente del clima. Según este autor, no hay ninguna restricción de agua en el suelo y su magnitud depende exclusivamente del clima. Por su parte, Penman (1956) define la evapotranspiración potencial como la cantidad de agua transpirada por un cultivo corto de césped que cubre el suelo en su totalidad y sin falta de agua. Incorpora así, al concepto de evapotranspiración potencial, no solo el clima, sino también las condiciones del cultivo y el agua en el suelo.

Justamente, los dos factores que ejercen mayor influencia sobre la evapotranspiración son el desarrollo vegetal de la planta y el contenido de humedad del suelo, los cuales son muy variables y difíciles de medir. Incorporando estos dos factores, el concepto de evapotranspiración potencial se define, entonces, como la máxima evapotranspiración posible que se produce en condiciones favorables cuando el suelo está bien provisto de agua y tapizado por una vegetación o cubierta vegetal densa y bien extensa, pareja y de poca altura.

Algunos investigadores observaron que el valor de la evapotranspiración potencial no representa la capacidad evaporativa máxima, y se comprobó que, en zonas áridas y semiáridas, la evapotranspiración en algunos cultivos de mayor porte (tales como el maíz, el girasol, la alfalfa, el sorgo, entre otros) es superior a la estimada con la evapotranspiración medida en césped. Esto llevó a la introducción del concepto de evapotranspiración de referencia reduciendo las ambigüedades de interpretación a las que da lugar el concepto de evapotranspiración y permitiendo, de forma más directa, relacionarlo con los requerimientos de agua de los cultivos específicos. En resumen, el concepto de evapotranspiración de referencia es similar al de evapotranspiración potencial, pero se diferencia en que la evapotranspiración de referencia es aplicada a un cultivo específico, estándar o de referencia (habitualmente, este cultivo es una gramínea, o alfalfa, de 8 a 15 cm de altura uniforme, de crecimiento activo, que cubre totalmente el suelo y que no se ve sometido a déficit hídrico).

3.2.2. Evapotranspiración Real

Es la pérdida de agua por evaporación y transpiración en las condiciones atmosféricas y de humedad del suelo actuales, reinantes. Es la cantidad de agua que efectivamente es utilizada por la evapotranspiración, también es conocida como uso consuntivo. La evapotranspiración real es más difícil de calcular ya que, además de las condiciones atmosféricas que influyen en la evapotranspiración potencial y de referencia, intervienen la magnitud de las reservas del suelo y los requerimientos del cultivo. Para determinarla, generalmente, se modifica la evapotranspiración potencial con un factor de corrección dependiente del nivel de humedad del suelo y de las características de cada cultivo.

Para tener en cuenta los efectos de las características del cultivo sobre las necesidades de agua se han desarrollado unos coeficientes de cultivo K_c , los cuales relacionan la evapotranspiración de referencia ET_o con la evapotranspiración de cultivo ET_c (Figura 3.3.), y representan la evapotranspiración de un cultivo en condiciones óptimas, que produzca rendimientos óptimos. En el Apéndice A se muestran los lineamientos de uso de K_c , según manual 56 de la FAO, Evapotranspiración del Cultivo (Guía para la determinación de los requerimientos de agua de los cultivos).

La evapotranspiración de cultivo se calcula mediante la siguiente ecuación:

$$ET_{c} = kc ET_{o} \tag{3.1}$$

Donde:

 ET_c = Evapotranspiración del cultivo en mm/día. ET_o = Evapotranspiración de referencia en mm/día. K_c = Coeficiente de cultivo (adimensional).

La curva *K*_c se establece según manual 56 de la FAO **(Figura 3.4.)**.

Figura 3.3. Proceso de cálculo de la ET_c (Allen, 2006)

Figura 3.4. *Curva típica K_c (Allen, 2006)*

3.3. Factores que Influyen en el Proceso

Al estudio de la evapotranspiración, además de los factores que afectan a la evaporación, se le incorporan aquellos asociados a la transpiración. Cuando los estomas están completamente abiertos, la tasa de transpiración está determinada por los mismos factores que controlan a la evaporación. De

esta manera, los factores que afectan a la transpiración en forma directa serán aquellos que influyan sobre el comportamiento estomático.

La evaporación depende del poder evaporante de la atmósfera, que a su vez depende de los siguientes factores:

- Radiación solar.
- Temperatura (en relación estrecha con la anterior).
- Humedad, a menos humedad más evaporación.
- Presión atmosférica (y la altitud en relación con ella), a menor presión (y/o mayor altitud) más evaporación.
- Viento más viento, más evaporación.

En la evaporación desde la lámina de agua libre, influye:

- El poder evaporante de la atmósfera.
- La salinidad del agua (inversamente).
- La temperatura del agua.

La evaporación desde suelo desnudo depende de:

- El poder evaporante de la atmósfera.
- El tipo de suelo (textura, estructura, etc.).
- El grado de humedad del suelo.

Finalmente, la transpiración está en función de:

- El poder evaporante de la atmósfera.
- El grado de humedad del suelo.
- El tipo de planta.
- Variaciones estacionales: En un cultivo, en el desarrollo de las plantas, en zonas de bosque de hoja caduca, en la caída de la hoja se detiene la transpiración.
- Variaciones interanuales: En áreas de bosque la *ET* aumenta con el desarrollo de los árboles.

3.4. Instrumentos de Medición

3.4.1. Lisímetro

Está constituido por un depósito enterrado, abierto en la parte superior y conteniendo el suelo que se quiere estudiar en condiciones no perturbadas. La muestra del suelo recibe las precipitaciones del lugar que son medidas en un pluviómetro; el suelo contenido en el lisímetro es drenado por el fondo, midiéndose la cantidad de agua. La evapotranspiración *E* del suelo, durante un cierto periodo, puede ser

determinada si son conocidas la precipitación *P*, la cantidad de agua drenada *D* y la variación de la cantidad de agua ΔR acumulada en el suelo dentro del lisímetro, según la ecuación:

$$E = P - D + \Delta R \tag{3.2}$$

El valor de ΔR , en ciertos instrumentos, es obtenido por pesaje a través de una balanza registradora en la cual está montada la caja lisimétrica; también pueden ser hechas medidas de humedad del suelo a diferentes profundidades, y si el periodo en que se procesan las determinaciones es suficientemente grande, ΔR puede ser despreciable comparado con *E*.

En la Figura 3.5. se muestran dos esquemas y dos fotos de lisímetros; "a" y "b" representan esquemas de lisímetros de balanza; "c", un lisímetro instalado en una estación meteorológica; "d", un lisímetro instalado en el mismo campo de cultivo, incluyendo instrumentos meteorológicos.

Figura 3.5. Esquema y fotos de lisímetros (Sánchez, 2017)

Figura 3.6. Tipos de lisímetros: De pesada, de drenaje sin succión y de drenaje con succión (Sánchez, 2017)

En la Figura 3.6. se muestran los tipos de lisímetros (de pesada, de drenaje sin succión y de drenaje con succión); en el primer caso, los de pesada miden los cambios de peso de un volumen de tierra. El de drenaje sin succión recolecta el agua del suelo que se infiltra naturalmente hacia abajo; es decir, agua que se mueve por efecto gravitatorio. En el tercer caso se aplica una succión en el suelo para extraer, despacio, el agua a través de un material poroso.

Dado que los métodos directos de determinación de la evapotranspiración (lisímetros) son bastante costosos, se usan métodos indirectos basados en fórmulas empíricas que incorporan los diversos parámetros que controlan el proceso **(Figura 3.7.)**. El proceso de medición es por balance (Sánchez, 2017).

 $Precipitaciones = ETR + Infiltración \pm \Delta S$

(3.3)

Este método, normalmente, dispone de bordes que impiden la escorrentía superficial, pero, a veces, esta también se recoge y se incluye en el balance. La única medida compleja es la variación de almacenamiento. Normalmente se mide la humedad del suelo, a partir de ese parámetro se calcula para convertir esa humedad en lámina de agua equivalente expresada en mm.

Si deseamos medir la *ETP* es más simple. Mediante riego, debemos mantener el suelo en condiciones óptimas de humedad, y el cálculo sería despejando *ETP*:

$$Precipitaciones + Riego = ETR + Infiltración$$
(3.4)

En este caso, ya que se considera la variación de almacenamiento, puesto que dicho almacenamiento está siempre completo, debemos tener en cuenta que un lisímetro difícilmente es representativo para toda una región.

3.4.2. Torre Eddy Covarianza

El método de Eddy Covarianza **(Figura 3.8.)** determina los flujos de superficie, como la suma de los flujos turbulentos medidos por encima de la superficie y la divergencia de flujo entre la superficie y el nivel de medición de Eddy Covarianza (Barr et al., 2006).

$$LE = \lambda \rho \overline{w' H_2 0'}$$
(3.5)
$$H = \rho C_{\pi} w' T'$$
(3.6)

$$= \rho c_p w I \tag{3.6}$$

Donde λ es el calor latente de vaporización; ρ , la densidad del aire y $w'H_2O'$, la covarianza entre la velocidad vertical del viento y la concentración de vapor en el aire. C_p es el calor específico a presión constante y w'T' es la covarianza entre la velocidad del viento vertical y la temperatura. El símbolo (') indica la fluctuación instantánea de los valores promediados en el tiempo de una variable específica de acuerdo con la descomposición de Reynolds de una señal estocástica meteorológica (Gash, 1994).

La fiabilidad de las mediciones de flujo depende de diferentes supuestos teóricos de la técnica de covarianza (Bezerra et al., 2015; Kaimal & Finnigan, 1994), entre los cuales, los más importantes son la homogeneidad horizontal, la estacionariedad y la velocidad media del viento vertical igual a cero durante el periodo promedio. Se deben aplicar varias correcciones para obtener procedimientos de flujo de fluidos de alta calidad que ahora están bien evaluados en la literatura (Aubinet et al., 1999; Twine et al., 2000).

Figura 3.8. Torre Eddy Covariancia (Aubinet et al., 1999)

- Primer ejemplo:

Para un lisímetro usado en investigación se tiene información que permite calcular la cantidad de agua utilizable en mm. Para esto debemos utilizar los términos capacidad de campo (*CC* %) y punto de marchitez (*PM* %), siendo que la cantidad de agua utilizable es conocida como humedad aprovechable HA = CC-PM.

En este sentido, se tiene un suelo con una profundidad de 60 cm, una densidad aparente de 1.3, una capacidad de campo de 25 % y un punto de marchitez de 11 %. Calcular el agua utilizable o aprovechable por las plantas expresada en mm.

Solución:

Consideremos 1 m² de suelo:

- Volumen = $1 \text{ m}^2 \times 0.6 \text{ m} = 0.6 \text{ m}^3$.
- Masa = Volumen x densidad = $0.6 \text{ m}^3 \text{ x} 1.3 \text{ tn}/\text{m}^3 \text{ x} 1000 = 780 \text{ kg}.$
- Agua utilizable por las plantas = 25% 11% = 14%.
- Agua utilizable en 1 m² = 780 kg x 14/100 = 109.2 kg de agua = 109.2 litros.
- Estos 109.2 litros/ $m^2 = 109.2 \text{ mm} (1 \text{ litro}/m^2 = 1 \text{ mm}).$

También podemos utilizar una relación para cálculo de láminas de agua a partir de contenidos de humedad (%).

$$La(mm) = \frac{CC(9_0) - PM(9_0)}{100} Da(\frac{tn}{m3}) \times Prof(mm)$$

Donde *La* es la lámina de agua expresada en mm, *CC* la capacidad de campo, *PM* el punto de marchitez, *Da* la densidad aparente, *Prof* la profundidad y *HAT* la humedad aprovechable total. Reemplazaremos estos valores en las unidades indicadas. Cabe señalar que las unidades mostradas en la ecuación presentan incoherencia, la explicación corresponde a que la *Da* se encuentra dividida por la *Da* del agua, la misma que asumimos igual a 1.

$$La(mm) = \frac{25(\%) - 11(\%)}{100} 1.3 \left(\frac{tn}{m3}\right) x \ 600(mm) = 109.2 \ mm$$

- Segundo ejemplo:

Calcular la ET_o si se tiene información registrada de un lisímetro y ha sido tabulada como se muestra a continuación:

Mos	Días del	Lámina de	Precipitación	Drenaje
10105	mes	riego (mm)	(mm)	(mm)
Variables		R	Р	D
Mayo	31	167.95	11.5	9.91
Junio	30	167.95	3.1	9.88
Julio	31	173.55	0	2.17

Para el cálculo de la ET_o usaremos la ecuación de balance en el lisímetro de la siguiente manera:

$R + P = ET_o + D + \Delta S$

Las variables las explicamos de la siguiente manera: R corresponde a la lámina incorporada por riego, expresada como lámina almacenada (mm) y que puede ser determinada por cálculo en función a variación de contenidos de humedad. P es la precipitación registrada en un pluviómetro instalado al costado del lisímetro. D es el agua de drenaje que es medida en el lisímetro y en función al área de este se transforma también a mm. El valor ΔS es cero, tratándose de un sistema bajo riego, lo que significa que los trabajos en estas condiciones son más simples. Finalmente, ET_o corresponde a la evapotranspiración.
Para el mes de Mayo: $167.95 + 11.5 = ET_o + 9.91 + 0$ $ET_o = 169.54 \text{ mm/mes} = 5.47 \text{ mm/día.}$ Para el mes de Junio: $167.95 + 3.1 = ET_o + 9.88 + 0$ $ET_o = 161.17 \text{ mm/mes} = 5.37 \text{ mm/día.}$ Para el mes de Julio: $173.55 + 0 = ET_o + 2.17 + 0$

 $ET_o = 171.38 \text{ mm/mes} = 5.53 \text{ mm/día}.$

3.5. Métodos de Estimación

La medición de la evapotranspiración potencial es muy compleja, ya que requiere instrumentos específicos y la determinación de parámetros físicos. Los métodos experimentales son, en general, costosos y pueden ser desarrollados apropiadamente solo por investigadores. Las dificultades en la aplicación de los métodos de campo llevaron a desarrollar procedimientos de estimación de la evapotranspiración potencial que involucran datos climáticos fácilmente accesibles. En general, los métodos para determinar la evapotranspiración potencial se clasifican en métodos directos y métodos indirectos.

3.5.1.Métodos Directos

Los más ampliamente utilizados se conocen como "balance hídrico" y "balance energético".

3.5.1.1. Balance Hídrico. Consiste en evaluar los flujos de agua que entran y salen de la zona radicular del cultivo dentro de un determinado periodo de tiempo. El método propone determinar la evapotranspiración (*ET*) mediante la siguiente ecuación.

$$ET = R + P_r - ES - D - C_a \pm FS \pm \Delta SW \qquad (3.7)$$

Donde: *R* = Riego. *ES* = Escurrimiento superficial. *D* = Percolación profunda. C_a = Capilaridad. FS = Flujo subsuperficial. ΔSW = Variación en el contenido de agua en el suelo.

Los parámetros restantes ya fueron definidos anteriormente.

La ventaja que presenta este método es que su formulación es simple; sin embargo, el método ha mostrado baja precisión en las medidas diarias y limitaciones importantes para obtener la evapotranspiración durante periodos lluviosos.

3.5.1.2. Balance Energético. Está basado en la regulación del proceso de evapotranspiración en función de la cantidad de energía disponible. Parte de la energía que recibe el sistema de interés se emplea en producir evapotranspiración y es posible calcularla aplicando el principio de conservación de la energía de la misma manera que se ha explicado para estimar la evaporación. La principal diferencia entre el método de balance energético aplicado en la estimación de la evapotranspiración es que aquí el sistema no solo involucra suelo y aire, sino también vegetación. Por lo tanto, el flujo de radiación neta (Q_n) se emplea no solo para evaporar el agua, sino también para calentar las superficies (suelo y vegetación), lo que se denomina calor latente y calor sensible, respectivamente.

De esta forma, la evapotranspiración puede expresarse:

$$ET = \frac{Q_n - Q_{s-p}}{\delta x L_v x (1-B)} \tag{3.8}$$

Donde:

 $Q_{s,p}$ = Flujo de calor almacenado en el sistema suelo-planta. Los parámetros restantes ya fueron definidos anteriormente. Q_n se mide directamente con un radiómetro, mientras que $Q_{s,p}$ se determina empleando pequeños termopares enterrados en el suelo. Una simplificación de la Ecuación (3.3) se reduce a la expresión siguiente, de donde el valor de evapotranspiración se obtiene a partir de l_v :

1

$$Q_n - G = L_v + H \tag{3.9}$$

Donde: G = Flujo térmico del suelo. H = Flujo de calor sensible.

La ecuación (3.3) solo considera flujos verticales y desprecia la tasa neta de energía que se transfiere horizontalmente por advección; por este motivo, este método solo es aplicable a superficies extensas de vegetación homogénea. La ecuación ignora también la energía utilizada en actividades metabólicas y el calor almacenado y liberado por la planta. Estos procesos utilizan una pequeña fracción de la radiación total diaria, motivo por el cual pueden considerarse nulos. Así, el flujo de calor latente representa la fracción de evapotranspiración que puede ser derivada de la ecuación del balance de energía si los otros componentes son conocidos.

3.5.2. Métodos Indirectos

Estos métodos de estimación deducen la evapotranspiración potencial corrigiendo medidas muy relacionadas; por ejemplo, mediciones en tanques de evaporación, o bien, aplicando modelos físicos o estadísticos a partir de parámetros climáticos generales.

3.5.2.1. Corrección de Tanque Evaporímetro. El método consiste en encontrar una relación entre la tasa de evapotranspiración producida en un lisímetro y la tasa de evaporación medida en un tanque de evaporación clase A. En base a esta relación se determina un coeficiente empírico para las condiciones ambientales del sitio de estudio. Mediciones posteriores de evaporación en un tanque de evaporación clase A podrán utilizarse para estimar la evapotranspiración potencial empleando el coeficiente empírico previamente establecido y para condiciones ambientales similares. Así, la evapotranspiración potencial *ETP* puede calcularse mediante la siguiente ecuación (Allen et al., 1998):

$$ETP = K_{tan}EV_t \tag{3.10}$$

Donde:

 K_{tan} = Coeficiente empírico del tanque de evaporación. EV_t = Medida de evaporación del tanque. La aproximación de los tanques de evaporación es ampliamente utilizada en la determinación de la evapotranspiración potencial. La ventaja que presenta este tipo de procedimientos es que integran los factores de clima y proveen una buena estimación de la evapotranspiración potencial, siempre que el servicio de mantenimiento del tanque sea adecuado. Doorenbos & Pruitt (1977) determinaron los coeficientes empíricos de tanque de evaporación clase A para diferentes sitios en condiciones climáticas variables (velocidad del viento y humedad relativa) y en distintos entornos del tanque (ya sea rodeado por barbecho seco o cultivo verde). Estos coeficientes se detallan en las Tablas 3.1., 3.2., a seguir:

	Bandeja colocada e cultivada, de forraje poca altura	n supe verde	erficie y de		Bandela colocada barbecho seco	en zoi	na de	
Humedad relativa (%)		Baja <40	Media 40-70	Alta >70		Baja <40	Media 40-70	Alta >70
Velocidad del viento (Km/d)	Distancia por el lado barlovento del cultivo de forraje verde (m)				Distancia por el lado barlovento del barbecho seco (m)			
Leve	0	0.55	0,65	0,75	0	0,70	0,80	0,85
<175	10	0,65	0,75	0,65	10	0,60	0.70	0,80
	100	0,70	0.80	0,85	100	0,55	0,65	0,75
· · · · · · · · · · · · · · · · · · ·	1000	0,75	0,85	0,85	1000	0,50	0,60	0,70
Moderada	0	0,50	0,50	0,65	0	0,65	0,75	0,80
175-425	10	0,60	0,70	0,75	10	0,55	0,65	0,70
	100	0,65	0,75	0,80	100	0,50	0,60	0,65
1. P	1000	0,70	0,80	0.80	1000	0.45	0.55	0,60
Fuerte	0	0,45	0,50	0,60	0	0,60	0,65	0,70
425-700	10	0,55	0,50	0,65	10	0,50	0,55	0,65
	100	0,60	0,65	0,70	100	0,45	0.50	0,60
1. P. A. 199 1.	1000	0,65	0,70	0,75	1000	0,40	0.45	0,55
Muy fuerte	0	0,40	0,45	0,50	0	0.50	0.60	0,65
>700	10	0,45	0,55	0,60	10	0,45	0,50	0,55
- 10.10	100	0.50	0,60	0,65	100	0,40	0,45	0,50
	1000	0.55	0.60	0.65	1000	0.35	0.40	0.45

Tabla 3.1. Coeficientes de bandeja clase A (Doorenbos y Pruitt, 1977)

Tabla 3.2.Coeficiente de tanque clase A (Allen, 1998)

Tanque Clase A	Caso i en una	A: Tanque : superficie	situado cultivada		Caso	B: Tanque : n suelo de:	situado snudo	
HR media		baja	media	alta		baja	media	alta
		< 40	40-70	> 70		< 40	40-70	> 70
Velocidad del viento (m s *)	Distancia del cultivo a barlovento (m)				Distancia del barbecho a barlovento (m)			
Baja	1	,55	,65	,75	1	,7	,8	,85
< 2	10	,65	,75	,85	10	,6	,7	,В
	100	,7	,8	,85	100	,55	.65	,75
	1 000	.75	.85	,85	1 000	.5	.6	.7
Moderada	1	,5	,6	,65	1	,65	.75	.8
2-5	10	,6	,7	,75	10	,55	,65	.7
	100	.65	.75	.8	100	,5	,6	,65
	1 000	7	,8	,8	1 000	,45	,55	,6
Alta	1	,45	,5	,6	1	,б	,65	,7
5-8	10	,55	,6	,65	10	,5	,55	,65
	100	.6	,65	.7	100	.45	.5	.6
	1 000	,65	.7	,75	1 000	.4	,45	,55
Muy alta	1	,4	,45	,5	1	,5	,6	,65
>8	10	.45	.55	.6	10	.45	.5	,55
	1.00	,5	,6	,65	100	.4	,45	,5
	1 000	,55	,6	,65	1 000	,35	,4	,45

A partir de estos valores se han deducido ecuaciones de regresión con las cuales los coeficientes de tanque (K_{tan}) pueden calcularse con mayor exactitud, dependiendo de las condiciones del entorno del tanque de evaporación; así, por ejemplo, para un entorno de tanque con cultivo verde, la ecuación correspondiente es (Allen et al.,1998):

 $K_{tan} = 0.108 - 0.0286V_2 + 0.0422ln(FET) + 0.1434 ln(HR)$ $- 0.000631[ln(FET)]^2lnHR$ (3.11)

Donde:

FET = La distancia (entre 1 m y 1000 m) del tanque a la superficie especificada.

 V_2 = Velocidad a 2 m sobre la superficie.

HR = Humedad relativa.

En esta última ecuación, la velocidad del viento se expresa en unidades de m/s, debido a la naturaleza variable del entorno del tanque de evaporación utilizado en este estudio se utilizó un valor de *FET* de 1000 m.

La aplicabilidad del método de tanque es confiable para periodos mayores de 10 días. La determinación de este plazo obedece a una convención internacional puesta en práctica por el hecho de que 10 días es un periodo de tiempo razonable para desarrollar alguna actividad agrícola que permita solucionar los problemas que pudiesen surgir durante el transcurso de la misma

3.5.2.2. Modelos Físicos. Los métodos descriptos para la evaporación en superficies de agua abierta se emplean para calcular la evapotranspiración efectuando ajustes que tienen en cuenta las condiciones de la vegetación y del suelo (Lascano, 2000). La mayoría de las fórmulas de evapotranspiración potencial son empíricas y dependen de las correlaciones conocidas entre la evapotranspiración potencial y una o más variables meteorológicas o climáticas tales como la radiación, la temperatura, la velocidad del viento y las diferencias de presión de vapor. En estos casos, en general, los procedimientos que estiman la evapotranspiración potencial pueden agruparse en modelos de temperatura, modelos de radiación y modelos combinados.

3.5.2.3. Modelos de Temperatura:

- Thornthwaite (1948)

$$ETP = k_t ETP_{(o)} \tag{3.12}$$

Donde:

KT = Constante de cada mes del año, variable en función de la latitud.

 $ETP_{(o)}$ = Evapotranspiración potencial a 0° de latitud es definida por:

$$ETP_{(o)} = 1.6 \left(\frac{10t}{I}\right)^{a} \tag{3.13}$$

Siendo:

t = Temperatura media mensual.

I = Índice de temperatura eficiente.

a= Función del índice térmico.

$$a = 675x10^{-9}I^3 - 771x10^{-7}I^2 + 1972x10^{-5}I + 0.49239 \quad (3.14)$$

El índice de temperatura eficiente *I* se define como la suma de los valores de los índices de calor de cada uno de los 12 meses del año:

$$I = \sum_{i=1}^{12} i$$
 (3.15)

Donde:

 $I_c =$ Índice de calor mensual.

Cada índice de calor es función de la temperatura media mensual y se determina por:

$$i = \left(\frac{t}{5}\right)^{1.514} \tag{3.16}$$

$$ETP_c = ETP \frac{N}{12} \frac{d}{30} \tag{3.17}$$

Donde:

*ETP*_c = Evapotranspiración potencial corregida.

N = Número máximo de horas de sol, dependiendo del mes y la latitud **(Tabla 3.3.)**.

D = Número de días del mes.

						- 1 - C					1	
Latitud	Ene.	Feb.	Marzo	Abril	Мауо	Junio	Julio	Ago.	Sep.	Oct	Nov.	Dic.
70	٥	6.6	11	15.6	21.3	24	24	17.6	12.8	8.3	2.3	0
68	1.1	7.3	11.1	15.3	19.7	24	22.3	17	12.7	8.7	4.1	0
66	3.9	7.8	11.2	14.9	18.7	22	20.3	16.4	12.7	9	5.2	1.9
64	5	8.2	11.2	14.7	17.9	20.3	19.2	16	12.6	9.3	6	3.7
62	5.7	8.5	11.3	14.4	17.3	19.2	18.4	15.7	12.6	9.5	6.6	4.8
60	6.4	8.8	11.4	14.Z	16.8	18.4	17.7	15.3	12.5	9.7	7.1	5.6
58	6.9	9.1	11.4	14.1	16.4	17.8	17.2	15.1	12.5	9.9	7.5	6.2
56	7.3	9.3	11.5	13.9	16	17.3	16.8	14.8	12.4	10.1	7.9	6.7
54	7.7	9.5	11.5	13.8	15.7	16.8	16.4	14.6	12.4	10.2	8.2	7.1
52	B	9.7	11.5	13.6	15.4	16.5	15	14.4	12.4	10.3	8.5	7.5
50	8.3	9.8	11.6	13.5	15.2	16.1	15.7	14.3	12.3	10.4	8.7	7.9
48	8.6	10	11.6	13.4	15	15.8	15.5	14.1	12.3	10.6	9	8.2
46	8.8	10.1	11.6	13.3	14.8	15.5	15.2	14	12.3	10.7	9.2	8.5
44	9.1	10.3	11.6	13.2	14.6	15.3	15	13.8	12.3	10.7	9.4	8.7
42	9.3	10.4	11.7	13.2	14.4	15	14.8	13.7	12.3	10.8	9.6	9
40	9.5	10.5	11.7	13.1	14.2	14.8	14.6	13.6	12.2	10.9	9.7	9.2
38	9.6	10.6	11.7	13	14.1	14.6	14.4	13.5	12.2	11	9.9	9.4
36	9.8	10.7	11.7	12.9	13.9	14.4	14.2	13.4	12.2	11.1	10.1	9.6
34	10	10.8	11.8	12.9	13.8	14.3	14.1	13.3	12.2	11.1	10.2	9.7
32	10.1	10.9	11.8	12.8	13.6	14.1	13.9	13.2	12.2	11.2	10.3	9.9
30	10.3	11	11.8	12.7	13.5	13.9	13.8	13.1	12.2	11.3	10.5	10.1
28	10.4	11	11.8	12.7	13.4	13.8	13.6	13	12.2	11.3	10.6	10.2
26	10.5	11.1	11.8	12.5	13.3	13.6	13.5	12.9	12.1	11.4	10.7	10.4
24	10.7	11.2	11.8	12.5	13.2	13.5	13.3	12.8	12.1	11.4	10.8	10.5
22	10.8	11.3	11.9	12.5	13.1	13.3	13.2	12.8	12.1	11.5	10.9	10.7
20	10.9	11.3	11.9	12.5	12.9	13.2	13.1	12.7	12.1	11.5	11	10.8
18	11	11.4	11.9	12.4	12.8	13.1	13	12.6	12.1	11.6	11.1	10.9
16	11.1	11.5	11.9	12.4	12.7	12.9	12.9	12.5	12.1	11.6	11.2	11.1
14	11.3	11.6	11.9	12.3	12.6	12.8	12.8	12.5	12.1	11.7	11.3	11.2
12	11.4	11.6	11.9	12.3	12.6	12.7	12.6	12.4	12.1	11.7	11.4	11.3
10	11.5	11.7	11.9	12.2	12.5	12.6	12.5	12.3	12.1	11.8	11.5	11.4
8	11.6	11.7	11.9	12.2	12.4	12.5	12.4	12.3	12	11.8	11.5	11.5
6	11.7	11.8	12	12.1	12.3	12.3	12.3	12.2	12	11.9	11.7	11.7
4	11.8	11.9	12	12.1	12.2	12.2	12.2	12.1	12	11.9	11.8	11.8
2	11.9	11.9	12	12	12.1	12.1	12.1	12.1	12	12	11.9	11.9
0	12	12	12	12	12	12	12	12	12	12	12	12

		Tabla 3.3.		
Número máximo	de horas de sol	en el hemisferio nort	e (**) (Allen et al., 19) 98)

(**) Para el hemisferio Sur corresponde el valor complementario de 24, por ejemplo: para Enero a 30º de latitud Sur: 24 – 10,3 = 13,7 horas La temperatura se incorpora en unidades de °C y los datos de evapotranspiración potencial se obtienen en unidades de mm/mes. Este método ha mostrado ser confiable para periodos largos de tiempo, pero no es preciso en periodos cortos; además, muestra resultados aceptables en zonas húmedas con vegetación abundante, pero los errores se incrementan en zonas áridas o semiáridas (Muñoz-Carpena & Ritter- Rodríguez, 2005).

- García y López (1970)

$$ETP = 1.21x10^{n}(1 - 0.01HR_{d}) + 0.21T - 2.3 \quad (3.18)$$

Donde:

T ya fue definida.

n = Factor dependiente de la temperatura media diaria y se determina por:

$$n = \frac{7.45T}{234.7 + T} \tag{3.19}$$

 HR_d = Humedad relativa media porcentual de las horas y se define como:

$$HR_{d} = \frac{HR_{8:00} + HR_{14:00}}{2} \tag{3.20}$$

Siendo:

 $HR_{8:00}$ = Humedad relativa media porcentual a las 8:00 h. $HR_{14:00}$ = Humedad relativa media porcentual a las 14:00 h. Los datos de temperatura se incorporan en unidades de °C y los resultados de evapotranspiración potencial se obtienen en unidades de mm/día. Según los propios autores, este procedimiento se adapta a los sitios comprendidos entre los 15° de latitud norte y los 15° de latitud sur.

Linacre (1977)

$$ETP = \frac{\frac{700 T_{smn}}{100 - L_d} + 15(T - T_r)}{80 - T}$$
(3.21)

Donde: $L_d = \text{Latitud.}$

 T_r = Temperatura en el punto de rocío.

 T_{snm} = Temperatura media diaria reducida al nivel del mar.

Los parámetros restantes ya fueron definidos anteriormente.

Los datos de temperatura se incorporan en unidades de °C y la evapotranspiración potencial resulta expresada en mm/día. Según Muñoz & Ritter (2005), este método ha mostrado precisión en periodos largos de tiempo, pero disminuye en la escala diaria.

- Blaney-Criddle (1950)

La ecuación de Blaney-Criddle es un método relativamente simplista para calcular la evapotranspiración; sin embargo, esta ecuación es ideal cuando solo los conjuntos de datos de temperatura del aire están disponibles.

Dada la precisión aproximada de la ecuación de Blaney-Criddle se recomienda que se use para calcular la evapotranspiración por periodos de un mes o más. La ecuación calcula la evapotranspiración para un 'cultivo de referencia' que se toma como pasto verde de crecimiento activo de 8 a 15 cm de altura.

$$ET_o = p(0.457 T_{media} + 8.128) \tag{3.22}$$

Donde:

 ET_o = Evapotranspiración de referencia (mm/día) (mensual). T_{media} = Temperatura diaria promedio (°C) dada como T_{media} = $(T_{max} + T_{min})/2$.

p = Porcentaje medio diario de horas anuales **(Tabla 3.4.)**.

			-									
Latitud Sur	Ε	F	м	А	М	J	J	Α	S	0	N	D
5	8.68	7.76	8.51	8.15	8.34	8.05	8.33	8.38	8.19	8.56	8.37	8.68
10	8.86	7.87	8.53	8.09	8.18	7.86	8.14	8.27	8.17	8.62	8.53	8 88
15	9.05	7.98	8.55	8.02	8.02	7.65	7.95	8.15	8.15	8.68	8.70	9.10
20	9.24	8.09	8.57	7.94	7.85	7.43	7.76	8.03	8.13	8.76	8.87	9.33
25	9.46	8.21	8.60	7.84	7.66	7.20	7.54	7.90	8.11	8.86	9.04	9.58
30	9.70	8.33	8.62	7.73	7.45	6.96	7.31	7.76	8.07	8.97	9.24	9.85
34	9.92	8.45	8.64	7.64	7.27	6.74	7.10	7.63	8.05	9.06	9.42	10.08
38	10.15	8.57	8.66	7.54	7.08	6.50	6.87	7.49	8.03	9.16	9.61	10.34
42	10.40	8.70	8.68	7.44	6.85	6.23	6.64	7.33	8.01	9.26	9.82	10.64
46	10.69	8.86	8.70	7.32	6.61	5.92	6.37	7.16	7.96	9.37	10.07	10.97

 Tabla 3.4.

 Porcentaje medio diario de horas anuales (Monsalve, 1999)

- Método de Ivanov (1954)

Este modelo fue propuesto por el investigador ruso Konstantin Evgenevich Ivanov en 1954, está basado en la temperatura del aire y la humedad relativa. Su fórmula, conforme a la referencia, se escribe como (Sánchez-Martínez & Carvacho-Bart, 2011):

$$ETP = 0.018 (25 + T_m)^2 (100 - HR)$$
(3.23)

Donde:

ETP = Evapotranspiración potencial expresada en mm/día. T_m = Temperatura media del aire expresada en °C. HR = Humedad relativa del aire expresada en porcentaje.

- Primer ejemplo:

Estime la evapotranspiración potencial a partir de las fórmulas de Thorntwaite y Blaney y Criddle. La zona se encuentra a 5°0'de latitud sur, la temperatura mensual se da a continuación:

	SET	ОСТ	NOV	DIC	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO
Temperatura	25.0	25.4	26.0	26 F	27.0	20.2	26.7	24.5	22.4	22.6	24.0	24.2
(0)	∠3.0	∠3.4	20.0	20.5	27.0	20.2	20.7	24.5	23.1	∠3.0	∠4.0	24.3

Solución:

En primer lugar, usando el método de Thorntwaite procedemos al cálculo del índice mensual de calor "*i*".

$$i = \left(\frac{t}{5}\right)^{1.514}$$

	SET	ост	NOV	DIC	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO
Temperatura (°C)	25.0	25.4	26.0	26.5	27.0	28.2	26.7	24.5	23.1	23.6	24.0	24.3
i	11.44	11.71	12.13	12.49	12.85	13.72	12.63	11.09	10.15	10.48	10.75	10.95

Luego, el índice de calor anual será:

$$I = \sum_{i=1}^{12} i = 11.44 + 11.71 + 12.13 + \dots \dots + 10.75 + 10.95 = 140.40$$

Con este índice anual calculamos la función del índice térmico:

$$\begin{array}{l} a = 675 x 10^{-9} I^3 - 771 x 10^{-7} I^2 + 1972 x 10^{-5} I + 0.49239 \\ a = 675 x 10^{-9} (140.4)^3 - 771 x 10^{-7} (140.4)^2 + 1972 x 10^{-5} (1140.4) + 0.49239 \\ = 3.3565 \\ a = 3.3565 \end{array}$$

Ahora estamos en posibilidades de aplicar la ecuación para *ETP* en mm/mes:

$$ETP_{(o)} = 1.6 \left(\frac{10t}{I}\right)^a = 1.6 \left(\frac{10t}{140.4}\right)^{3.3565}$$

	SET	ОСТ	NOV	DIC	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO
Temperatura												
(°C)	25.0	25.4	26.0	26.5	27.0	28.2	26.7	24.5	23.1	23.6	24.0	24.3
i	11.44	11.71	12.13	12.49	12.85	13.72	12.63	11.09	10.15	10.48	10.75	10.95
ETP sin corr	111.0	117.0	126.6	134.9	143.7	166.3	138.4	103.7	85.1	91.5	96.8	100.9

Paso seguido haremos la corrección respectiva usando la siguiente ecuación. El número de horas de luz lo obtenemos de la Tabla 3.3.

$$ETP_{c} = ETP\frac{N}{12}\frac{d}{30}$$

	SET	ост	NOV	DIC	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO
Temperatura	25.0	25.4	20.0	00 F	07.0	20.0	00.7	24.5	00.4	00 C	24.0	24.2
(0)	25.0	25.4	26.0	20.5	27.0	28.2	26.7	24.5	23.1	23.0	24.0	24.3
i	11.44	11.71	12.13	12.49	12.85	13.72	12.63	11.09	10.15	10.48	10.75	10.95
ETP sin corr	111.0	117.0	126.6	134.9	143.7	166.3	138.4	103.7	85.1	91.5	96.8	100.9
n⁰dias mes	30	31	30	31	31	28	31	30	31	30	31	31
nº horas luz	12.00	11.90	11.75	11.75	11.75	11.85	12.00	12.10	12.25	12.25	12.25	12.15
ETP corr.	111.0	119.9	123.9	136.5	145.4	153.2	143.0	104.6	89.8	93.4	102.1	105.5

Para el caso del método de Blaney y Criddle usamos la siguiente ecuación, donde los valores de *p* los obtenemos de la Tabla 3.4. para 5°0′ de la latitud sur.

 $ET_o = p(0.457 T_{media} + 8.128)$

	SET	ост	NOV	DIC	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO
Temperatura	25.0	25.4	26.0	26.5	27.0	20.2	26.7	24.5	22.4	22.6	24.0	24.2
(0)	25.0	25.4	20.0	20.5	27.0	20.2	20.7	24.5	23.1	23.0	24.0	24.3
р	8.19	8.56	8.37	8.68	8.68	7.76	8.51	8.15	8.34	8.05	8.33	8.38
Eto (mm/mes)	160.14	168.94	167.48	175.67	177.65	163.08	173.01	157.49	155.83	152.251	159.07	161.173

3.5.2.4. Modelos de Radiación:

- Método de Hargreaves (1985)

Esta ecuación propuesta por Hargreaves y otros, en 1985, se escribe como:

$$ET_o = 0.0023 R_o (T_m + 17.8) (T_{max} - T_{min})^{1/2}$$
(3.24)

Donde:

 ET_o = Evapotranspiración de referencia expresada en mm/día.

 R_o = Radiación solar extraterrestre expresada en mm/día **(Tabla 3.5.)**.

 T_m = Temperatura media diaria entendida como el promedio de la temperatura máxima y la temperatura mínima del periodo expresada en °C.

 T_{max} = Temperatura máxima diaria expresada en °C.

 T_{min} = Temperatura mínima diaria expresada en °C.

Este método empírico incorpora el término de radiación solar extraterrestre; es decir, la radiación solar recibida sobre una superficie horizontal en el límite exterior de la atmósfera, la cual puede calcularse fácilmente o tomar su valor desde tablas ya elaboradas, dado que es función de la latitud del lugar y de la época del año; no obstante, los parámetros fundamentales siguen siendo los relativos al estado térmico del aire. Este método permite estimaciones de ET_o y se puede aplicar a periodos diarios. Es uno de los métodos empíricos más simples y precisos (Jensen et al., 1997), por lo que su uso es recomendado en situaciones donde no es posible aplicar otros y evitar así la confusión causada por la gran diversidad de métodos de este tipo (Hargreaves, 1994; Droogers & Allen, 2002).

					HEMIS	FERIO	NORT	E									HE	MISFE	RIO S	UR					
Latitud	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Π	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
70	0.0	1.1	4.2	9.4	14.4	17.3	16.1	11.4	6.1	2.0	0.0	0.0		16.9	11.7	6.4	2.0	0,1	0.0	0.0	0.9	4.4	9.6	15.2	18.5
68	0.0	1.5	4.8	9.8	14.4	17.1	15.9	11.7	5.6	2.4	0.3	0.0		16.7	12.0	5.9	.2.4	0.3	0.0	0.0	13	4.9	10.0	15.3	18.2
66	0.2	2.0	5.3	10.1	14.5	16.9	15.8	12.0	7.1	2.9	0.6	0.0		16.7	12.2	7.4	2.5	0.6	0.0	0.2	1.7	5.3	10.4	15.3	18.0
64	0.6	2.4	5.8	10.5	14.7	16.8	15.8	12.2	75	3.5	1.0	0.Z		15.7	12.6	7.9	3.4	1.0	0.2	0.5	2.2	5.9	10.7	15.5	17.9
62	09	2.9	6.3	10.9	14.8	16.8	15.9	12.5	8.0	4.0	14	0.5		15.8	12.9	83	3.5	1.4	0.5	0.8	2.6	63	11.1	15.6	17.9
60	1.3	3.4	6.8	11.2	14.9	16.8	16.0	12.8	8.4	4.4	1.8	0.9		15.9	13.2	8.8	4.4	1.8	0.8	1.2	3.1	6.8	11.5	15.8	17.9
58	1.8	3.9	7.2	11.6	15.1	16.9	16.1	13.1	8.9	4.9	22	13	П	17.0	13.5	9.2	4.9	2.2	1.2	1.6	3.6	73	11.8	16.0	18.0
55	2.2	4.4	7.7	11.9	15.3	16.9	16.2	13.3	9.3	5.4	2.7	1.2	Ħ	17.1	13.8	9.6	5.4	2.7	1.6	2.0	4.0	7.8	12.2	16.1	18.0
54	2.7	4.9	8.2	12.2	15.4	16.9	16.2	13.6	9.7	5.9	3.2	2.1		17.2	14.0	10.0	5.9	3.1	2.0	2.4	4.5	8.2	12.5	16.3	18.1
52	3.1	5.4	8.6	12.6	15.6	17.0	16.4	13.8	10.1	6.4	3.7	2.5	Π	17.3	14.3	10.4	6.4	3.6	2.4	2.9	5.0	8.7	12.8	16.4	18.1
50	3.6	5.9	9.1	12.9	15.7	17.0	16.4	14.0	10.5	6.9	4.2	3.1	Π	17.4	14.5	10.9	6.8	4.1	2.9	3.3	\$5	9.1	13.1	16.6	18.2
48	41	6.4	9.5	13.1	13.8	17.1	16.5	14.2	10.9	7.4	4.7	3.6	П	17.5	14.8	31.2	7.3	4.5	3.3	3.8	6.0	95	13.4	16.7	18.2
46	46.1	6.9	9.9	13.4	16.0	17.1	16.6	14.4	11.2	7.8	5.1	4.0		17.6	15.0	11.6	7.8	5.0	3.8	4.2	6.4	99	13.7	16.8	18.2
44	51	7.3	10.3	13.7	15.0	17.1	16.6	14.7	11.5	8.3	5.7	4.5		17.6	15.1	12.0	8.2	5.5	4.3	4.7	6.9	10.3	13.9	16.9	16.2
42	5.6	7.B	10.7	13.9	15.1	17.1	16.7	14.8	11.9	B.7	5.1	5.1	П	17.7	15.4	17.3	8.7	6.0	4.7	52	7.3	10.7	14.7	17.0	18.7
40	6.1	8.3	11,1	14.2	16.2	17.1	16.7	15.0	12.2	9.2	6.7	5.6	Ħ	17.7	15.6	12.6	9.1	6.4	5.2	5.7	7.8	11.1	14.4	17.1	18.2
38	6.6	8.8	11.5	14.4	15.3	17.1	16.7	15.1	12.5	9.6	7.1	6.0		17.7	15.7	12.9	9.5	6.9	5.7	6.2	8.2	11.4	14.6	17.1	18.2
36	7.1	9.2	11.8	14.6	15.3	17.0	15.7	15.3	12.9	10.0	7.6	6.6		17.7	15.9	13.2	9.9	7.4	5.2	6.6	8.7	11.8	14.8	17.1	18.1
34	7.6	9.7	12.2	14.7	16.3	17:0	16.7	15.3	13.1	10.4	8.1	7.1		17.7	16.0	13.5	10.3	7.8	6.6	7.1	9,1	12.1	15.0	17.1	28.1
32	81	10.1	12.5	14.5	16.3	16.9	16.6	155	13.4	10.9	8.6	T.6		17.7	15.1	13.8	10.7	8.3	7.4	7.6	9.5	12.4	15.1	17.1	18.0
30	86	10.5	12.8	15.0	16.3	16.8	16.6	15.5	13.6	11.5	91	\$1		17.6	16.2	34.0	111	8.7	7.6	8.0	9.9	12.7	15.1	17.1	17.9
28	91	10.9	13.1	15.1	16.3	16.7	16.5	15.6	13.8	11.6	95	8.5	П	17.6	15.2	14.2	11.5	9.2	8.0	8.4	10.3	13.0	15.4	17.1	17.8
26	9.6	11.3	13.4	45.3	15.3	16.6	36.4	15.6	14,1	12.0	10.0	9.1		17.5	16.1	14.4	11.8	9.6	8.5	8.9	10.7	13.3.	15.5	17.1	17.7
24	10.0	11.8	13.7	15.3	15.2	16.4	16.3	15.6	14.2	12.3	10.4	9.5		17.3	15.3	14.6	12.2	10.0	8.9	9.3	11.1	13.5	15.6	17.0	17.6
22	10.5	12.1	13.9	15.4	16.1	16.3	16.2	15.7	14.4	12.7	10.9	10.0	T	17.2	15.4	14.8	12.5	10.4	9.4	9,8	11.5	13.8	15.7	16.9	17.4
20	10.9	12.5	14.2	15.5	16.0	16.1	16.0	15.6	14.5	13.0	11.3	10.4		17.1	16.3	14.9	12.8	10.9	9.8	10.2	11.8	14.0	15.8	16.8	17.2
18	11.4	12.9	14.4	15.5	15.9	16.0	15.9	15.6	14.7	13.3	11.7	10.9	П	16.9	15.3	15.1	13.1	11.Z	10.2	10.5	12.2	14.2	15.8	16.7	17.0
15	11.8	13.2	14.6	15.6	15.8	15.8	15.7	15.6	14.9	13.6	12.1	11.4		16.8	16.3	15.2	13.4	11.6	10.7	11.0	12.5	14.4	15.8	16.6	15.8
14	12.2	13.5	14.7	15.6	15.7	15.6	15.6	15.5	15.0	13.8	12.5	11.8		16.6	16.2	15.3	13.5	32.0	17.1	11.4	12.8	14.5	15.8	16.4	15.6
12	12.6	138	14.9	15.5	15.5	15.3	15.3	15.4	15.1	14.1	12.9	12.2	П	15.4	16.2	15.4	13.9	17.3	11.5	11.8	13.1	14.7	15.8	16.2	15.3
10	13.0	14.1	15.1	15.5	15.3	15.1	15.1	15.3	15.1	143	13.2	12.7	T	16.1	16.0	15.4	14.1	12.7	119	12.2	13.4	14.8	15.7	16.Ú	15.1
8	13.4	14.4	15.2	15.4	15.1	14.8	14.9	15.2	15.2	14.5	13.5	13.1		15.9	15.9	15.5	14.3	13.0	12.2	12.5	13.5	14.9	15.7	15.8	15.8
6	13.8	14.6	15.3	15.3	14.9	14.6	24.7	15.1	15.2	14.7	13.9	13.4		15.5	15.8	15.5	14.5	13.3	12.6	12.9	13.9	15.0	15.6	15.6	15.5
4	14,1	14.9	15.3	15.3	14.7	14.3	14.4	14.9	15.2	14.5	14.2	13.8		15.3	15.6	15.5	14.7	13.6	13.0	13.2	14.1	15.1	15.5	15.3	15.2
2	14.4	15.1	15.4	15.1	14.4	14.0	14.1	14.7	15.2	15.2	14.5	14.2	Π	15.1	15.5	15.5	14.9	13.9	13.3	13,5	14.4	15.1	15.4	15.1	14.9
0	14.8	153	155	15.0	14.2	136	120	146	15.3	163	11.0	145		14.9	15.2	15.5	15 /	44.7	126	+1.0	140	18.7	153	110	145

 Tabla 3.5.

 Radiación solar extraterrestre en mm/día (Allen et al., 1998)

Priestley y Taylor (1972)

$$ETP = \frac{1.26 \,\Delta \,Q_n}{\Delta + \gamma} = \frac{1.26 \,\alpha \,Q_n}{\alpha + 1} \tag{3.25}$$

Los parámetros ya han sido definidos anteriormente y α es la constante de Penman. Las unidades, tanto de radiación como de evapotranspiración potencial, son mm/día.

Esta ecuación ha sido aplicada a zonas de humedad baja. Stagnitti et al. (1989) validaron el procedimiento de Priestley y Taylor a través de treinta estudios del balance hídrico en los que se verificó que, en zonas con vegetación y con déficit nulo o escaso de agua, la radiación es la responsable de aproximadamente el 95 % de la evaporación anual.

- Turc (1963)

Propone una relación empírica en términos de la temperatura y la radiación. Para una humedad relativa menor al 50 %, la evapotranspiración potencial queda expresada en la siguiente ecuación:

$$ETP = 0.31 \frac{T}{T+15} (Q_n + 0.29) \left(1 + \frac{50 - HR}{100} \right) \quad (3.26)$$

Cuando la humedad relativa es mayor al 50 %, la evapotranspiración potencial se expresa como:

$$ETP = 0.31 \frac{T}{T+15} (Q_n + 0.29) \tag{3.27}$$

En ambas ecuaciones la temperatura se expresa en ${}^{\circ}C$; la radiación y la evapotranspiración potencial, en mm/día.

Para estimaciones anuales, Turc formuló una propuesta de la siguiente forma:

$$ETP = \frac{P}{\sqrt{0.9 + \frac{P^2}{L^2}}}$$
(3.28)

Donde:

ETP = Evapotranspiración real en mm/año. P = Precipitación en mm/año. L = 300+25t+0.05t³. T = Temperatura media anual en °C.

Aunque Turc no estableció límites de aplicabilidad para su fórmula, podemos observar que, para valores de precipitación bajos, la fórmula calcula *ETR* > *P*, lo que es obviamente imposible. Esto ocurre aproximadamente cuando *P* < (20.t). Como ejemplo para t = 20 °C y *P* = 300 mm, la fórmula arroja *ETR* = 306 mm (Figura 3.9.).

86

- Jensen y Haise (1963)

$$ETP = C_T (T - T_x) R_s \tag{3.29}$$

Donde:

ETP = Evapotranspiración (en las mismas unidades de R_s).

 R_s = Radiación solar incidente a nivel del suelo (cal/cm²/día o mm/día).

T = Temperatura media del periodo de cálculo elegido (semana, mes...)

 C_T , T_x = Constantes que definimos a continuación:

$$C_T = \frac{1}{38 - \frac{h}{152.5} + \frac{380}{e_2 - e_1}}; \dots \dots \dots T_x = -2.5 - 0.14(e_2 - e_1) - \frac{h}{550}$$

h = Altitud del lugar (metros)

$$R_s = R_o \left(0.18 + 0.55 \frac{n}{N} \right)$$

 R_o = Radiación solar si no existiera atmósfera **(Tabla 3.5.)**.

n = Número de horas de sol reales (medidas con un heliógrafo).

N = Número máximo teórico de horas de sol.

Los parámetros involucrados en la ecuación han sido definidos anteriormente. Las unidades en las que se expresan las variables son las mismas que en el método de Turc. El empleo de la temperatura media diaria del aire subestima seriamente la evapotranspiración bajo condiciones de alto movimiento de masas de aire atmosférico, pero ha demostrado dar buenos resultados en atmósferas estables (Muñoz & Ritter, 2005). La estimación propuesta por Jensen y Haise fue el resultado del ajuste realizado con, aproximadamente, 3000 mediciones de evapotranspiración en el oeste de los Estados Unidos durante un periodo de 35 años.

Makkink (1957)

$$ETP = 0.61 \, \emptyset \, Q_n - 0.12 \tag{3.30}$$

$$\emptyset = 0.39856 + 0.01673 \, T + (-1.31077 \, x \, 10^{-4}) T^2 \tag{3.31}$$

La temperatura se expresa en unidades de ^oC y la radiación y la evapotranspiración potencial se expresan en mm/día. Este procedimiento estuvo basado en estudios estadísticos de 254 cuencas alrededor del mundo. Se han obtenido buenos resultados aplicándolo en sitios de climas húmedos y fríos, pero no en regiones áridas (Ponce, 1989).

- Coutagne

Es en realidad una estimación del déficit de escorrentía; es decir, de la parte de la precipitación que no produce escorrentía. Si se trata de una cuenca cerrada, y consideramos su balance hídrico a escala anual, el agua precipitada que no ha generado escorrentía debe haberse perdido por evapotranspiración. Esta fórmula fue establecida empíricamente comparando las precipitaciones y la escorrentía total de numerosas cuencas.

$$ETR = P - XP^2 \tag{3.32}$$

Donde:

ETR = Evapotranspiración real en m/año. P = Precipitación en m/año.

$$X = \frac{1}{0.8 + 0.14 t}$$

T = Temperatura media anual en °C.

- Método de la unidad térmica solar

Caprio (1974) determinó un modelo basado en el concepto de la unidad térmica solar (STU), que es una función de la temperatura media diaria (°C) menos un umbral de temperatura relacionado con la radiación solar total en J/m². En unidades de SI, para la *ET* en mm/día, el método STU se expresa como:

$$ET = 6.1 \times 10^{-9} R_s (1.8T_m + 1) \tag{3.33}$$

- Método de la radiación solar y térmica

Idso & Jackson (1969) desarrollaron un método basado en el supuesto que el flujo de calor latente es proporcional a la radiación neta en condiciones favorables para que se dé la evapotranspiración potencial. La ecuación es:

 $ET = 4.11 \times 10^{-7} [R_{swl} - R_{sw\uparrow} + 1.56 (R_{lwl} - R_{lw\uparrow}) + 6.53 \times 10^{6}] \quad (3.34)$

Donde *ET* es la tasa de evapotranspiración de 24 horas en mm/dia, $4.11x10^{-7}$ es un factor de conversión que transforma la energía de J/m^2 a mm de agua. Los otros números son coeficientes empíricos. Asimismo:

 $\begin{array}{l} R_{sw\ell} \,\, es \, la \, radiación \, solar \, incidente. \\ R_{sw\ell} \,\, es \, la \, radiación \, solar \, reflejada. \\ R_{lw\ell} \,\, es \, la \, radiación \, térmica \, incidente \, de \, la \, atmósfera. \\ R_{lw\ell} \,\, es \, la \, radiación \, térmica \, saliente \, de \, la \, superficie. \end{array}$

Todas representan la energía emitida en 24 horas y se expresan en J/m². Los datos de entrada que se precisan son la radiación solar diaria, el albedo de la superficie húmeda y las temperaturas máxima y mínima del suelo y del aire. La radiación térmica incidente de la atmósfera se calcula con la ecuación de Idso y Jackson (1969) y la radiación térmica saliente de la superficie se calcula con la ecuación de Stefan-Boltzmann usando la media de las temperaturas máxima y mínima diarias de la superficie.

Asimismo, los cálculos realizados con este modelo tienen un buen ajuste con medidas en lisímetros con suelos desnudos y con cultivos, así como en superficies libres de agua.

- Método de regresión

La relación entre la radiación solar y la *ET* se ha establecido empíricamente con una relación lineal de la forma:

$$ET = aR_s + b \tag{3.35}$$

Donde *a* y *b* son constantes empíricas que dependen de la localización y de la estación. Stanhill (1961) y Tanner (1967) propusieron valores para *a* y *b*. Estos modelos son sencillos de utilizar, pero, debido a que son valores muy empíricos, tienen una aplicación muy limitada **(Figura 3.10.)**.

- Primer ejemplo:

Calcular la ET_o diaria para el mes de octubre sabiendo que la zona se encuentra a 10° de latitud norte y que las temperaturas representativas de ese mes son: t_{media} = 26.8 °C, t_{max} diaria = 31.6 °C y t_{min} diaria = 23.0 °C.

Solución:

 $ET_o = 0.0023 R_a (T_m + 17.8) (T_{max} - T_{min})^{1/2}$ El valor de la radiación extraterrestre (Tabla 3.5., para octubre, y 10° latitud Norte): $R_a = 14.3 \text{ mm/día}$.

Suponiendo que la constante K_{τ} fuera 0.20, el valor de R_s sería: $ET_o = 0.0023 \times 14.3 \times (26.8+17.8)(31.6-23.0)^{1/2} = 4.30 \text{ mm/día}.$

- Segundo ejemplo:

Calcular la *ETP* para el mes de junio con los siguientes datos: Latitud = 41° N. Altitud = 790 metros. Mes más cálido = Julio. Media de las máximas diarias de julio = 29.8 °C. Media de las mínimas diarias de julio = 12.9 °C. Datos para el periodo que se desea calcular: mes de junio. N.º medio de horas de sol = 10.4. Temperatura media = 19.6 °C.

Solución:

1.º Calculamos la presión de vapor a saturación correspondiente a la temperatura media de las máximas y de las mínimas del mes más cálido mediante la siguiente expresión:

$$e = 6.108 \exp\left(\frac{17.27 t}{t + 237.3}\right)$$

Donde:

e = Presión de vapor a saturación (mbar) correspondiente a la temperatura *t* (°C).

Entonces aplicamos la fórmula de la siguiente manera; para la media de las mínimas y de las máximas del mes más cálido:

$$e_1 = 6.108 \exp\left(\frac{17.27 \times 12.9}{12.9 + 237.3}\right) = 14.88$$
$$e_2 = 6.108 \exp\left(\frac{17.27 \times 29.8}{29.8 + 237.3}\right) = 41.95$$

2.º Calculamos los coeficientes C_{τ} y T_x necesarios para la fórmula:

$$C_T = \frac{1}{38 - \frac{790}{152.5} + \frac{380}{41.95 - 17.88}} = 0.0213$$
$$T_x = -2.5 - 0.14(41.95 - 17.88) - \frac{790h}{550} = -7.726$$

3.º Cálculo de R_s (radiación solar incidente sobre la superficie). Si disponemos de medidas de R_s en otras unidades podemos convertirlas a su equivalente en mm/día (la evaporación equivalente a esa energía). Para pasar de MJ/m²/día a mm/día multiplicar por 238.85 / (597.3 - 0.57 T), donde *T*= Temperatura media del periodo elegido. A su vez, con un mínimo error, basta multiplicar por 0.408.

Si no disponemos de medidas directas de R_s podemos evaluarlo a partir del número de horas de sol (n) mediante la expresión siguiente:

$$R_s = R_o \left(0.18 + 0.55 \frac{n}{N} \right)$$

En esta ecuación:

R_o = Radiación solar si no existiera atmósfera (Tabla 3.4.).
n = Número de horas de sol reales (medidas con un heliógrafo).
N = Número máximo teórico de horas de sol (Tabla 3.2).

Si tampoco disponemos de medidas de horas de sol reales (n), se puede estimar n/N, aproximadamente, para la zona estudiada; por ejemplo, 0.8 para los meses de verano, 0.6 para primavera y otoño, 0.4 para invierno.

Usando las tablas respectivas para 41° de latitud, y para el mes de junio, la radiación solar que llegaría, si no hubiera atmósfera, es de 17.1 mm/día **(Tabla 3.4.)**, y el máximo teórico de horas de sol sería de 14.9 horas **(Tabla 3.3.)**. Datos medidos: 10.4 horas de sol diarias.

$$R_s = 17.3 \left(0.18 + 0.55 \frac{10.4}{15.1} \right) = 9.67 \, mm/dia$$

4.° Finalmente, procedemos al cálculo de la evapotranspiración potencial, $ETP = C_T (T-T_x) R_s$.

Donde:

ETP = Evapotranspiración (en las mismas unidades que se hayan utilizado para la *Rs*).

 R_s = Radiación solar incidente a nivel del suelo (mm/día).

T = Temperatura media del periodo de cálculo elegido (semana, mes...).

ETP = 0.0213 (19.6-(-7.726)(9.64)) = 5.61 mm/día = 168.33 mm/mes (junio).

3.5.2.5. Modelos Combinados:

Penman-Monteith FA098 (1998)

Quizá uno de los mayores atributos de la fórmula Penman-Monteith FAO98 es que permite estimar la evapotranspiración de referencia, ET_o , en función, solo, de los elementos meteorológicos: radiación solar neta, temperatura del aire, velocidad del viento y tensión de vapor del agua.

$$ETo = \frac{0.408 \,\Delta \left(R_n - G\right) + \gamma \frac{900}{T + 273} V_2(e_s - e_a)}{\Delta + \gamma (1 + 0.34 V_2)} \tag{3.36}$$

 ET_o es la evapotranspiración de referencia (mm/día). La evapotranspiración desde la superficie de un cultivo hipotético de 0.12 m de altura, 70 s/m de resistencia y de 0.23 albedo, la cual se asemeja a la evapotranspiración de una extensa superficie de grama activa, de altura uniforme, en crecimiento y sin limitaciones de agua (Allen et al., 1998). Los datos deben ser medidos en condiciones que correspondan a la definición de ET_o ; es decir, sobre una extensión de grama con evapotranspiración activa o sobre un ambiente con vegetación sana y con agua suficiente.

- Penman (1948 y 1963)

Es un ejemplo típico de la combinación de los modelos de balance de energía y transferencia de masa para calcular la evapotranspiración potencial. Está basado en cuatro factores climáticos: radiación, temperatura del aire, velocidad del viento y déficit de presión de vapor. Expresa a la evapotranspiración potencial de la siguiente manera:

$$ETP = \frac{Q_n + \gamma [0.263(e_a - e_d)(0.5 + 0.0062V_2)]}{\Delta + \gamma}$$
(3.37)

Todos los parámetros fueron definidos con anterioridad y se conservan las mismas unidades para cada una de las variables.

- Penman modificado por la FAO (Allen y Pruitt, 1991)

$$ETP = \frac{\left(\frac{\Delta}{\gamma} \frac{P_{snm}}{P}\right) Q_n + C_{as}}{\left(\frac{\Delta}{\gamma} \frac{P_{snm}}{P}\right) + 1}$$
(3.38)

Donde:

 P_{sum} = Presión promedio del vapor del aire sobre el nivel del mar.

 C_{ae} = Componente aerodinámico.

Los parámetros restantes ya han sido definidos anteriormente.

El componente aerodinámico se expresa como:

$$C_{ae} = 0.26 (e_s - e_a)(1 + 0.54V)$$
 (3.39)

Las unidades de las variables corresponden con las de los métodos anteriores. Esta modificación (referenciada como "Penman-FAO") ha mostrado buenos resultados en zonas tanto frías y húmedas como áridas; sin embargo, subestima la evapotranspiración bajo condiciones de alto movimiento de masas de aire atmosférico. La desventaja que presenta este procedimiento es que requiere de muchos componentes que no siempre están disponibles.

Penman modificado por Monteith (1963)

Involucra la resistencia de la planta al transporte de vapor de agua.

$$ETP = \frac{\Delta(Q_n - G) + \frac{\delta_h C_p(e_s - e_a)}{r_a}}{\delta l_v \left[\frac{(\Delta + \gamma)(r_a + r_f)}{r_a}\right]}$$
(3.40)

Donde:

G = Flujo térmico del suelo.

 δ_{h} = Densidad del aire húmedo.

 r_a = Resistencia del aire.

 r_f = Resistencia del follaje.

 C_p = Energía específica del aire a presión constante, siendo:

$$C_p = \frac{0.622 \,\delta \,l_v}{p} \tag{3.41}$$

El valor 0.622 es la relación entre el peso molecular del aire húmedo y el aire seco. Los parámetros restantes en las ecuaciones ya han sido definidos anteriormente. Considerando una superficie estándar cubierta de gramíneas de unos 12 cm de altura, la resistencia aerodinámica se expresa de la siguiente manera:

$$r_{\alpha} = \frac{208}{V_2}$$
 (3.42)

Si, además, el cultivo está provisto de buena iluminación, $r_f = 70$ s/m. En suelos con características fisicoquímicas homogéneas, el cálculo del flujo térmico del suelo, en periodos cortos de tiempo, se calcula con la siguiente ecuación simplificada:

$$G = 0.1(T_i - T_{i-1})$$
 (3.43)

Donde:

Ti = Temperatura media diaria del día actual.

Ti-1 = Temperatura media diaria del día anterior.

La ecuación de Priestley y Taylor constituye una modificación de la ecuación de Penman-Monteith, eliminando la necesidad de los datos de entrada que no sea la radiación y reemplazando el coeficiente aerodinámico de Penman-Monteith por el coeficiente α . Es útil, por lo tanto, en aquellas condiciones en las que las variables del componente aerodinámico (humedad relativa y velocidad del viento) no están disponibles. El método de Penman-Monteith ha mostrado muy buena precisión en la determinación de la evapotranspiración de referencia; sin embargo, en la mayoría de las situaciones, su aplicación está limitada a trabajos de investigación ya que los datos de r_a y G no están siempre disponibles

En mayo de 1990, la FAO, en colaboración con la Comisión Internacional de Riego y Drenaje y con la Organización Meteorológica Mundial, organizó una consulta de expertos e investigadores para revisar las metodologías de estimación de la evapotranspiración con fines de actualizar sus procedimientos. El panel de expertos recomendó la adopción del método de Penman-Monteith como un nuevo estándar para la evapotranspiración de referencia (Allen et al., 1998), definiendo el cultivo de referencia como un cultivo hipotético con una altura asumida de 0.12 m, con una resistencia de superficie de 70 m/s y un albedo de 0.23, muy parecidas a la evaporación de una superficie de extensión de hierba verde de altura uniforme, creciendo activamente y con el riego adecuado. Con las restricciones propuestas se dio origen a un nuevo método, que actualmente se denomina FAO Penman-Monteith. El método supera las deficiencias del anterior método de la FAO Penman y proporciona valores más consistentes con los datos reales de cultivo y el uso del agua en todo el mundo. De la ecuación original de Penman-Monteith, la evapotranspiración de referencia se expresa como:

$$ET_r = \frac{0.408 \,\Delta \left(Q_n - G\right) + \gamma \frac{900}{T + 273} V_2 \left(e_s - e_a\right)}{\Delta + \gamma \left(1 + 0.34 V_2\right)} \quad (3.44)$$

Recibiendo el nombre de ecuación FAO-Penman-Monteith. En estos dos últimos procedimientos la evapotranspiración potencial se calcula en unidades de mm/día. La radiación y el flujo térmico del suelo se incorporan como MJ/m² día. La velocidad del viento se expresa en m/s, las tensiones de vapor como kPa, la temperatura en °C, y la constante psicrométrica y la pendiente de la curva de presión de vapor como kPa/°C. Esta ecuación utiliza registros climatológicos de la radiación solar, temperatura del aire, humedad y velocidad del viento, variables que ya han sido definidas.

Para garantizar la integridad de los cálculos, las mediciones deben ser realizadas a 2 m de altura (o convertidas a esa altura) sobre una extensa superficie de hierba verde, en la sombra y sin escasez de agua. Este método ha mostrado muy buenos ajustes frente a medidas lisimétricas diarias.

- Fórmula de Van Bavel (1966)

Para calcular el poder evaporante del aire E_a en el método de Penman, Van Bavel derivó una expresión basado en la teoría de transporte turbulento del vapor de agua entre la cobertura vegetal y la atmósfera:

$$E_{a} = \frac{3.64}{T_{a}} \frac{V_{2}}{\left[ln \left(\frac{Z_{2}}{Z_{o}} \right) \right]^{2}} (e_{s} - e_{a})$$
(3.45)

Donde E_a = Poder evaporante del aire (cm/s).

 e_s = Presión de saturación del vapor a la temperatura media del aire (mb).

 e_a = Presión de vapor del aire (mb).

 V_2 = Velocidad de viento en m/s a 2 m de altura.

 T_a = Temperatura en K.

 z_o = Altura de rugosidad (m).

 z_2 = Altura donde se efectúan las mediciones (2 metros).

- Primer ejemplo:

Procederemos con un ejemplo de cálculo de la ET_o por la fórmula de Penman-Monteith FAO98 utilizando datos en periodo mensual de estación agroclimatológica:

Mes, abril; Lat. = 13° 44′ N; Altitud = 2 m; V_2 = 2 m/s; T = 30.2 °C; e_s = 4.42 kPa; e_a = 2.85 kPa Δ = 0.246 kPa/°C; R_n = 14.33 (MJ/m²día); G = 0.14 (MJ/m²día); γ = 0.067 kPa/°C.

Solución:

Como todos los datos se conocen, se reemplazan directamente en la ecuación de Penman-Monteith FAO98:

$$ETo = \frac{0.408 \ (0.246) \ (14.33 - 0.14) + \frac{(0.067)(900)(2)(4.42 - 2.85)}{30.2 + 273}}{0.246 + 0.067(1 + 0.34x2)}$$
$$= 5.72 \ mm/dia$$

Por lo tanto, la $ET_o = 5.72 \text{ mm/dia en abril será } 171.6 \text{ mm.}$ - **Ejemplo:**

En este caso procederemos con un ejemplo de cálculo de la ET_o por la fórmula de Penman-Monteith FAO98 utilizando datos en periodo horario de estación agroclimatológica:

Suponiendo el mismo lugar y los mismos datos de temperatura del ejemplo anterior (viento, tensión de vapor), pero suponiendo que son valores medios entre las 2 y las 3 de la tarde. Δ y γ se mantendrán con iguales valores, pero $R_n = (14,33/24) \text{ y} G = (0.1 \text{ R}_n) \text{ MJ/m}^2\text{h}$:

Mes, abril; Lat. = 13 ° 44' N; Altitud = 2 m; V_2 = 2 m/s; T = 30.2 °C; e_s = 4.42 kPa; e_a = 2.85 kPa Δ = 0.246 kPa/°C; R_n = (14.33/24=0.597) (MJ/m²día); G = (0.1R_n = 0.0597) (MJ/m²día); γ = 0.067 kPa/°C.

Solución:

En periodo horario; se entra con los datos medios horarios y el resultado de ET_o en mm/h; pero 900 se cambia por 37; 0.34 por 0.24 en el día y por 0.96 en la noche.

$$ETo = \frac{0.408 \ (0.246) \ (0.597 - 0.0597) + \frac{(37)(0.067)(2)(4.42 - 2.85)}{30.2 + 273}}{0.246 + 0.067(1 + 0.24x2)}$$
$$= 0.23 \ mm/h$$

- Tercer ejemplo:

Cálculo para periodo de un día. Sean los datos de una estación automática a 0.6822 radianes de latitud; altitud = 1818 m; día 5 de enero, $\Delta = 0.0578$ kPa/°C; $\gamma = 0.0542$ kPa/°C; $T_{max} = 14.9$ °C; $T_{min} = -6.6$ °C; $(e_s - e_a) = 0.86$ kPa; $V_2 = 2$ m/s; $R_n = 0.89$; G = 0.0. La temperatura a utilizar es la media de la máxima y mínima.

Solución:

$$ETo = \frac{0.408\ (0.0578)\ (0.89 - 0.0) + \frac{(900)(0.0542)(2)(0.86)}{4.2 + 273}}{0.0578 + 0.542(1 + 0.34x2)} = 2.2\frac{\text{MJ}}{\text{m}^2 - \text{día}}$$

Para convertir MJ/m²-día a mm/día multiplicamos 0.408. Entonces:

 $ET_o = 2.2 \times 0.408 = 0.8976 \text{ mm/día}.$

	Factor mul	tiplicador para obter ina superficie por un	ner la energía recibi idad de tiempo	da	Evaporación equivalente
	MJ	j.	cal		man diat
	m ⁻² día ⁻¹	cm² día¹	cm² día-1	w m-	mm dia:
1 MJ m² día¹	1	100	23,9	11,6	0,408
1 cal cm² día·1	4,1868 x 10 ²	4,1868	1	0,485	0,0171
1 W m ²	0,0864	8,64	2,06	1	0,0353
1 mm día ^{.1}	2,45	245	58,5	28,4	1

Tabla 3.6. Factores de conversión de evaporación (Allen et al. 1998)

- Cuarto ejemplo:

Cálculo de la ET_o del mes de enero, dada la información de un periodo de 30 años. Mes, enero; Latitud = 11°25'; Long = 69°41'; Altitud = 12 m; T_{max} = 31.4 °C; T_{min} = 24.1 °C; HR = 75 %;

 V_{12} = 19.1 km/h; insolación = 9.1 horas. Temperatura del mes anterior y siguiente, respectivamente: 26.7 °C y 27.6 °C. Recuerde que la ET_o de un mes en mm/día se calcula para el día 15 del mes dado.

Solución:

Iniciamos con los cálculos preliminares (1) Temperatura media del mes:

•
$$T = \left(\frac{T_{max} - T_{min}}{2}\right) = \left(\frac{31.4 - 24.1}{2}\right) = 27.8^{\circ}C$$

(2) Constante psicrométrica:

•
$$\gamma = 0.001628 \left(\frac{p}{\lambda}\right) = 0.001628 \left(\frac{101.17}{2.45}\right) = 0.0672$$

(3) *P* en kPa:

$$P = 101.3 \left(\frac{(293 - 0.006 \times 12)}{293} \right)^{5.26} = 101.2 \, KPa$$

(4) Pendiente de la curva de la tensión de vapor saturado (KPa/°C):

•
$$\Delta = (0.00587x27.8 + 0.6414)^7 = 0.218 KPa/°C$$

• $\lambda = 2.501 - (0.002361T) = 2.501 - (0.002361 x 27.8) = 2.4354$

(5) Viento a 12 m de altura: 19.1 Km/h=5.31 m/s; se ajusta a 2 m:

•
$$V_2 = \frac{4.87x5.31}{Ln(67.8x12-5.42)} = 3.86 \, m/s$$

(6) R_a , Radiación extraterrestre sobre superficie horizontal en periodo de un día, MJ/m^2 -día:

$$\begin{split} R_{\alpha} &= \left(\frac{1440}{\pi}\right) C_{s} d_{r} (\omega_{s} \sin \varphi \sin \delta + \cos \varphi \cos \delta \sin \omega_{s}) \\ R_{\alpha} &= \left(\frac{1440}{\pi}\right) 0.082 \ x \ 1.0319 (1.492 \sin(0.119) \sin(-0.3702) \\ &+ \cos(0.119) \cos(-0.3702) \sin(1.429)) = 31.3 \ MJ/cm^{2} dia \end{split}$$

Latitud =
$$11^{\circ}25' = 11.417^{\circ} = 0.199$$
 rad:
 $\omega_s = \acute{angulo horario a la puesta del sol.$
 $\omega_s = \cos^{-1}(-\tan\varphi\tan\delta) = \cos^{-1}(-\tan(0.199)\tan(-0.3702)) = 1.492$ rad
 $d_r = 1 + 0.033\cos\left(\frac{2\pi J}{365}\right) = 1 + 0.033\cos\left(2\pi\frac{15}{365}\right) = 1.0319$

J = Día del año, siendo 1 el 1.º de enero, y 365 el 31 de diciembre.

M = Mes.

J = Mes (275/9) + día del mes - k.

k = 32 en M de 30 días y agosto; 33 en M de 31 días; 30 en febrero y 31 en enero.

$$\begin{split} \delta &= 0.409 \sin\left(\left(\frac{2\pi J}{365}\right) - 1.39\right) = 0.409 \sin\left(\left(\frac{2\pi \times 15}{365}\right) - 1.39\right) = -0.3702\\ C_s &= constante \, solar, 0.082 \, \frac{MJ}{m^2 \min}\\ R_s(radiación \, solar \, global \, sobre \, sup. \, horizontal) \end{split}$$

$$R_{s} = R_{a} \left(0.25 + 0.5 \left(\frac{n}{N}\right) \right) = 31.2 \left(0.25 + 0.5 \left(\frac{9.1}{11.4}\right) \right) = 20.2 \, MJ/m^{2} dia$$
$$N = 24 \, \frac{\omega_{s}}{\pi} = 24 \, \frac{1.429}{\pi} = 11.4 \, horas$$

(7) Tensión de vapor saturado, kPa:

$$e_s = 0.611 \exp\left(\frac{17.27 \, T}{T + 237.3}\right) = 0.611 \exp\left(\frac{17.27 \, x \, 27.8}{27.8 + 237.3}\right) = 3.73 \, kPa$$

(8) Tensión de vapor actual, kPa:

$$e_{\alpha} = (0.01 HR)(e_s) = (0.01 \times 75)(3.73) = 2.79 kPa$$

(9) Radiación neta sobre la superficie del cultivo de referencia (MJ/m²-día):

$$\begin{split} R_n &= R_s(1-\alpha) - \sigma \left(\frac{T_{max}^4 + T_{min}^4}{2}\right) \left(0.34 - 0.14\sqrt{e_\alpha}\right) (1.35 \left(\frac{R_s}{R_{so}}\right) - 0.35\right) \\ R_n &= 20.0(1-0.23) \\ &- 4.903 \times 10^{-9} \left(\frac{(273+31.4)^4 + (273+24.1)^4}{2}\right) \left(0.34 - 0.14\sqrt{2.79}\right) (1.35 \left(\frac{20.2}{23.4}\right) - 0.35\right) = 12.11 \text{ MJ}/m^2 - \text{dfa} \end{split}$$

(10) Radiación solar en día despejado (MJ/m^2 -día):

$$R_{so} = R_{\alpha}(2x10^{-5}z + 0.75) = 31.3(2x10^{-5}x12 + 0.75) = 23.4 \text{ MJ}/m^2 - \text{día}$$

(11) Flujo calórico por radiación hacia el suelo, G (MJ/m²-día):

$$G_{mes} = 0.07 (T_{messiguiente} - T_{mesanterior}) = 0.07 (27.6 - 27.6) = 0.0 \text{ MJ}/m^2 - \text{dia}$$

En el lapso considerado de 31 días, en el mes de enero no llega calor al interior del suelo (signo +) que le reste a R_n : R_n - $(+G)=R_n$ -G, tampoco calor en el suelo que suba a la superficie (signo -) que le sume a la radiación neta: R_n - $(-G)=R_n$ +G.

Reemplazando las variables observadas y estimadas en la fórmula:

$$ETo = \frac{0.408 \Delta (R_n - G) + \gamma \frac{900}{T + 273} V_2(e_s - e_a)}{\Delta + \gamma (1 + 0.34V_2)}$$

$$ETo = \frac{0.408 0.218 (12.11 - 0.0) + 0.0672 \frac{900}{27.8 + 273} 3.86 (3.73 - 2.79)}{0.218 + 0.0672 (1 + 0.34x3.86)} = 4.82 \frac{mm}{dia}$$

- Quinto ejemplo:

Calcular la *ETP* mensual de enero a diciembre para una estación que se encuentra a: Latitud (grados) -17.82, Altitud (msnm) 3859, distribución de cobertura vegetal para tanque clase A (1 a 1000 m) 1.00 y altura del anemómetro (m) 8. Los datos de temperatura media, máxima y mínima, precipitación mensual, evaporación, humedad relativa, horas medias de sol, presión atmosférica y velocidad de viento a nivel mensual se muestran a continuación.

Variable Meteorológica	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
Temperatura media mensual (ºC)	10.70	10.03	9.85	9.65	8.50	7.40	5.93	7.20	8.25	9.35	8.80	10.30
Temp. media de máximas (ºC)	16.20	15.00	14.70	14.70	14.00	13.60	13.20	14.50	15.00	15.60	15.80	16.00
Temp. media de mínimas (°C)	5.20	5.07	5.00	4.60	3.00	1.20	-1.33	-0.11	1.50	3.10	1.80	4.60
Precipitación total mensual (mm)	156.94	134.87	136.41	51.57	11.51	4.53	2.09	10.33	24.15	42.43	52.84	88.10
Evaporación mensual Tanque (mm)	162.30	145.60	154.10	147.80	141.90	128.90	138.90	164.80	178.10	209.60	208.30	193.50
Humedad relativa (%)	60.00	60.00	61.00	53.00	43.00	39.00	39.00	42.00	43.00	44.00	45.00	51.00
Humedad relativa minima (%)	45.00	45.00	45.75	39.75	32.25	29.25	29.25	31.50	32.25	33.00	33.75	38.25
Horas de Sol media (h/día)	5.84	6.65	6.77	8.35	9.31	9.30	9.55	9.35	9.02	8.71	8.43	7.19
Presión atmosférica (kPa)	645.60	645.80	646.20	646.60	646.70	646.50	646.40	646.20	645.20	645.60	645.20	645.20
Presión atm. estimada (kPa)	65.24	65.24	65.24	65.24	65.24	65.24	65.24	65.24	65.24	65.24	65.24	65.24
Velocidad viento (m/s)	3.50	3.20	3.10	2.90	2.60	2.70	2.80	3.00	3.20	3.50	3.50	3.50

Usar los siguientes métodos:

Métodos de Thornthwaite, Turc, Hargreaves, Penman-Monteith, Blaney-Criddle, ecuación de Cenicafé, método cubeta, método clase -FAO, ecuación García López, Climdata, Jensen-Haise, Linacre y evaporación tanque.

Solución:

Tablas de cálculos previos:

HR>50	50.00	50	50	50	43	39	39	42	43	44	45	50
Calculado para el día 15 del mes												
	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
Latitud (grados)	-17.82	-17.82	-17.82	-17.82	-17.82	-17.82	-17.82	-17.82	-17.82	-17.82	-17.82	-17.82
Latitud (radianes)	-0.31	-0.31	-0.31	-0.31	-0.31	-0.31	-0.31	-0.31	-0.31	-0.31	-0.31	-0.31
Día del año:	15	46	74	105	135	166	196	227	258	288	319	349
	0.24	0.77	1.26	1.79	2.31	2.84	3.36	3.89	4.42	4.94	5.47	5.99
Declinación (radianes)	-0.37	-0.23	-0.04	0.17	0.33	0.41	0.38	0.25	0.06	-0.14	-0.32	-0.41
Declinación (grados)	-21.27	-12.95	-2.44	9.48	18.67	23.29	21.66	14.30	3.34	-8.22	-18.30	-23.22
Ángulo horario (radianes)	1.71	1.66	1.60	1.53	1.48	1.45	1.46	1.50	1.57	1.63	1.69	1.73
Ángulo horario (grados)	98.14	95.14	91.66	87.81	84.69	83.01	83.61	86.21	89.80	93.55	97.03	98.89
N (h/día)	13.08	12.69	12.22	11.71	11.29	11.07	11.15	11.49	11.97	12.47	12.94	13.19
L`´´	1.13	0.99	1.05	0.98	0.97	0.92	0.96	0.99	1.00	1.07	1.08	1.14
Corrección distancia Sol-Tierra	1.03	1.03	1.01	0.99	0.98	0.97	0.97	0.97	0.99	1.01	1.02	1.03
Declinación (radianes)	-0.37	-0.23	-0.04	0.17	0.33	0.41	0.38	0.25	0.06	-0.14	-0.32	-0.41
Declinación (grados)	-21.27	-12.95	-2.44	9.48	18.67	23.29	21.66	14.30	3.34	-8.22	-18.30	-23.22
Ángulo horario (radianes)	1.70	1.64	1.58	1.52	1.46	1.43	1.44	1.49	1.55	1.62	1.68	1.71
Ángulo horario (grados)	97.19	94.24	90.78	86.92	83.76	82.05	82.66	85.30	88.92	92.66	96.10	97.93
Ra (cal/cm2·día)	992.77	956.67	882.85	767.88	661.09	602.22	620.73	706.47	819.30	913.85	972.75	994.82
Ra (mm/día)	16.96	16.34	15.08	13.12	11.29	10.29	10.60	12.07	13.99	15.61	16.61	16.99
Ra (MJ/m2·día)	41.57	40.05	36.96	32.15	27.68	25.21	25.99	29.58	34.30	38.26	40.73	41.65

Variable Meteorológica	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
Latitud (grados)	-17.82	-17.82	-17.82	-17.82	-17.82	-17.82	-17.82	-17.82	-17.82	-17.82	-17.82	-17.82
Altitud (msnm)	3859.0	3859.0	3859.0	3859.0	3859.0	3859.0	3859.0	3859.0	3859.0	3859.0	3859.0	3859.0
Temperatura media mensual (ºC)	10.70	10.03	9.85	9.65	8.50	7.40	5.93	7.20	8.25	9.35	8.80	10.30
Temp. media de máximas (ºC)	16.20	15.00	14.70	14.70	14.00	13.60	13.20	14.50	15.00	15.60	15.80	16.00
Temp. media de mínimas (ºC)	5.20	5.07	5.00	4.60	3.00	1.20	-1.33	-0.11	1.50	3.10	1.80	4.60
Temp.Equivalente a nivel del mar	33.85	33.19	33.00	32.80	31.65	30.55	29.09	30.35	31.40	32.50	31.95	33.45
Rango de temperaturas	11.00	9.93	9.70	10.10	11.00	12.40	14.53	14.61	13.50	12.50	14.00	11.40
Diferencia Tmed Pos-Ant	-0.67	-0.18	-0.20	-1.15	-1.10	-1.47	1.26	1.05	1.10	-0.55	1.50	-0.40
Precipitación total mensual (mm)	156.94	134.87	136.41	51.57	11.51	4.53	2.09	10.33	24.15	42.43	52.84	88.10
Evaporación mensual Tanque (mm)	162.30	145.60	154.10	147.80	141.90	128.90	138.90	164.80	178.10	209.60	208.30	193.50
Dist.Cob.Veg.Tanque(1 a 1000 m)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Humedad relativa (%)	60.00	60.00	61.00	53.00	43.00	39.00	39.00	42.00	43.00	44.00	45.00	51.00
Humedad relativa minima (%)	45.00	45.00	45.75	39.75	32.25	29.25	29.25	31.50	32.25	33.00	33.75	38.25
Horas de Sol media (h/día)	5.84	6.65	6.77	8.35	9.31	9.30	9.55	9.35	9.02	8.71	8.43	7.19
Presión atmosférica (kPa)	645.60	645.80	646.20	646.60	646.70	646.50	646.40	646.20	645.20	645.60	645.20	645.20
Presión atm. estimada (kPa)	65.24	65.24	65.24	65.24	65.24	65.24	65.24	65.24	65.24	65.24	65.24	65.24
Velocidad viento (m/s)	3 50	3 20	3 10	2 90	2 60	2 70	2 80	3 00	3 20	3 50	3 50	3 50

Las celdas en color verde representan valores ingresados a la hoja de cálculo, las demás son calculadas con las fórmulas definidas anteriormente.

A continuación, presentamos resultados obtenidos en la formulación de cada método en la hoja de cálculo, habiendo utilizado las respectivas formulaciones.

EVAPORACIÓN Y EVAPOTRANSPIRACIÓN EN HIDROLOGÍA — MEDICIÓN, ESTIMACIÓN Y APLICACIONES

THORNTHWAITE (mm/mes)	Ene	Feb	Mar	Abr	Mav	Jun	Jul	Ago	Sep	Oct	Nov	Dic
Temperatura media °C	10.7	10.0	9.9	9.7	8.5	7.4	5.9	7.2	8.3	9.4	8.8	10.3
Indice calor mensual "i"	3.16	2.87	2.79	2.71	2.23	1.81	1.30	1.74	2.13	2.58	2.35	2.99
Índice calor anual "I"	28.66											
Parámetro "a"	0.959											
ETP sin ajustar mm/mes	56.56	53.18	52.24	51.23	45.36	39.72	32.14	38.67	44.08	49.70	46.89	54.53
L	1.13	0.99	1.05	0.98	0.97	0.92	0.96	0.99	1.00	1.07	1.08	1.14
ETP mm/mes	63.73	52.47	54.98	49.98	44.11	36.63	30.85	38.27	43.98	53.38	50.56	61.91
TURC (mm/mes)	Ene	Feb	Mar	Abr	Mav	Jun	Jul	Ago	Sep	Oct	Nov	Dic
Día del año (del 1 -1/l- al 365 -31/XII-)	15	46	74	105	135	166	196	227	258	288	319	349
Latitud (grados)	-17.82	-17.82	-17.82	-17.82	-17.82	-17.82	-17.82	-17.82	-17.82	-17.82	-17.82	-17.82
Temperatura media °C	10.7	10.0	9.9	9.7	8.5	7.4	5.9	7.2	8.3	9.4	8.8	10.3
Número de horas de Sol máximas (h/d	13.08	12.69	12.22	11.71	11.29	11.07	11.15	11.49	11.97	12.47	12.94	13.19
Horas de Sol media (h/día)	5.84	6.65	6.77	8.35	9.31	9.30	9.55	9.35	9.02	8.71	8.43	7.19
Insolación n/N	0.446	0.524	0.554	0.713	0.825	0.840	0.856	0.814	0.753	0.698	0.652	0.546
Rad. solar extraterrestre (MJ/m2·día)	41.57	40.05	36.96	32.15	27.68	25.21	25.99	29.58	34.30	38.26	40.73	41.65
Rad. solar Rs (cal/cm2·día)	453.49	482.96	462.30	477.88	457.02	422.13	441.34	483.64	530.13	560.12	568.22	515.56
Humedad relativa %	60	60	61	53	43	39	39	42	43	44	45	51
Factor fi	0.40	0.37	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40
Factor ci	1.00	1.00	1.00	1.00	1.10	1.16	1.16	1.11	1.10	1.09	1.07	1.00
ETP (mm/mes)	83.85	79.04	81.23	82.66	80.69	72.19	64.46	77.11	90.58	101.74	97.96	92.10
HARGREAVES (mm/mes)	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
Temperatura media °C "tm"	10.7	10.0	9.9	9.7	8.5	7.4	5.9	7.2	8.3	9.4	8.8	10.3
Temp. media de máximas °C "T"	16.2	15.0	14.7	14.7	14.0	13.6	13.2	14.5	15.0	15.6	15.8	16.0
Temp. media de mínimas °C "t"	5.2	5.1	5.0	4.6	3.0	1.2	-1.3	-0.1	1.5	3.1	1.8	4.6
T-t	11.0	9.9	9.7	10.1	11.0	12.4	14.5	14.6	13.5	12.5	14.0	11.4
Ra	19.67	20.51	19.49	19.51	18.33	16.90	17.63	19.43	21.50	22.92	23.46	21.77
ET referencia en mm/día	4.3	4.1	3.9	3.9	3.7	3.4	3.7	4.3	4.7	5.1	5.4	4.8
Días del mes	31	28	31	30	31	30	31	31	30	31	30	31
ET Ref. en mm/mes	132.57	115.84	119.64	117.42	114.02	103.46	113.71	132.36	141.97	156.89	161.08	147.30
FAO Penman-Monteith	15-1	15-11	16 III	45 N/	4E V/	45.10	4 = 1/11	45 \/00	AE IV	4 E V	AE VI	
	10-1	13-11	10-11	13-14	15-4	15-VI	15-VII	15-VIII	12-17	12-7	12-71	12-71
Día del año (del 1 -1/l- al 365 -31/XII-)	15	46	74	105	13-V 135	15-VI 166	15-VII 196	15-VIII 227	258	288	319	349
Día del año (del 1 -1/l- al 365 -31/XII-) Latitud (grados)	15- 15 -17.82	46	74 -17.82	105 -17.82	135 -17.82	15-VI 166 -17.82	15-VII 196 -17.82	15-VIII 227 -17.82	258 -17.82	288 -17.82	319 -17.82	349 -17.82
Dia del año (del 1 -1/l- al 365 -31/XII-) Latitud (grados) Altitud (m)	15- 15 -17.82 3859	46 -17.82 3859	74 -17.82 3859	105 -17.82 3859	135 -17.82 3859	15-VI 166 -17.82 3859	15-VII 196 -17.82 3859	15-VIII 227 -17.82 3859	258 -17.82 3859	288 -17.82 3859	319 -17.82 3859	349 -17.82 3859
Dia del año (del 1 -1/l- al 365 -31/XII-) Latitud (grados) Altitud (m) Temperatura media °C	15 -17.82 3859 10.7	46 -17.82 3859 10.0	74 -17.82 3859 9.9	105 -17.82 3859 9.7	135 -17.82 3859 8.5	15-VI 166 -17.82 3859 7.4	15-VII 196 -17.82 3859 5.9	15-VIII 227 -17.82 3859 7.2	258 -17.82 3859 8.3	288 -17.82 3859 9.4	319 -17.82 3859 8.8	349 -17.82 3859 10.3
Dia del año (del 1 -1/l- al 365 -31/XII-) Latitud (grados) Altitud (m) Temperatura media °C Temperatura media de máximas °C	15- 15 -17.82 3859 10.7 16.2	46 -17.82 3859 10.0 15.0	74 -17.82 3859 9.9 14.7	105 -17.82 3859 9.7 14.7	135 -17.82 3859 8.5 14.0	15-VI 166 -17.82 3859 7.4 13.6	15-VII 196 -17.82 3859 5.9 13.2	15-VIII 227 -17.82 3859 7.2 14.5	258 -17.82 3859 8.3 15.0	288 -17.82 3859 9.4 15.6	319 -17.82 3859 8.8 15.8	349 -17.82 3859 10.3 16.0
Dia del año (del 1 -1/l- al 365 -31/XII-) Latitud (grados) Altitud (m) Temperatura media °C Temperatura media de máximas °C Temperatura media de mínimas °C	15- 17.82 3859 10.7 16.2 5.2	46 -17.82 3859 10.0 15.0 5.1	74 -17.82 3859 9.9 14.7 5.0	105 -17.82 3859 9.7 14.7 4.6	135 -17.82 3859 8.5 14.0 3.0	15-VI 166 -17.82 3859 7.4 13.6 1.2	196 -17.82 3859 5.9 13.2 -1.3	15-VIII 227 -17.82 3859 7.2 14.5 -0.1	258 -17.82 3859 8.3 15.0 1.5	288 -17.82 3859 9.4 15.6 3.1	319 -17.82 3859 8.8 15.8 1.8	349 -17.82 3859 10.3 16.0 4.6
Dia del año (del 1 -1/l- al 365 -31/XII-) Latitud (grados) Altitud (m) Temperatura media °C Temperatura media de máximas °C Temperatura media de mínimas °C Presión atmosférica kPa	15 -17.82 3859 10.7 16.2 5.2 645.6	46 -17.82 3859 10.0 15.0 5.1 645.8	74 -17.82 3859 9.9 14.7 5.0 646.2	105-17 105 -17.82 3859 9.7 14.7 4.6 646.6	135 -17.82 3859 8.5 14.0 3.0 646.7	15-VI 166 -17.82 3859 7.4 13.6 1.2 646.5	15-VII 196 -17.82 3859 5.9 13.2 -1.3 646.4	15-VIII 227 -17.82 3859 7.2 14.5 -0.1 646.2	258 -17.82 3859 8.3 15.0 1.5 645.2	288 -17.82 3859 9.4 15.6 3.1 645.6	319 -17.82 3859 8.8 15.8 1.8 645.2	349 -17.82 3859 10.3 16.0 4.6 645.2
Dia del año (del 1 -1/l- al 365 -31/XII-) Latitud (grados) Altitud (m) Temperatura media °C Temperatura media de máximas °C Temperatura media de mínimas °C Presión atmosférica kPa Presión atm.estimada kPa	15 -17.82 3859 10.7 16.2 5.2 645.6 65.24	46 -17.82 3859 10.0 15.0 5.1 645.8 65.24	74 -17.82 3859 9.9 14.7 5.0 646.2 65.24	105-17.82 -17.82 3859 9.7 14.7 4.6 646.6 65.24	135 -17.82 3859 8.5 14.0 3.0 646.7 65.24	15-VI 166 -17.82 3859 7.4 13.6 1.2 646.5 65.24	19-17.82 -17.82 -17.82 -17.82 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -646.4 -65.24	15-VIII 227 -17.82 3859 7.2 14.5 -0.1 646.2 65.24	258 -17.82 3859 8.3 15.0 1.5 645.2 645.2	288 -17.82 3859 9.4 15.6 3.1 645.6 65.24	319 -17.82 3859 8.8 15.8 15.8 15.8 645.2 65.24	349 -17.82 3859 10.3 16.0 4.6 645.2 65.24
Dia del año (del 1 -1/- al 365 -31/XII-) Latitud (grados) Attitud (m) Temperatura media °C Temperatura media de máximas °C Temperatura media de mínimas °C Presión atmosférica kPa Presión atm. estimada kPa Velocidad viento -anemómetro- (m/s)	15 -17.82 3859 10.7 16.2 5.2 645.6 65.24 3.5	46 -17.82 3859 10.0 15.0 5.1 645.8 65.24 3.2	74 -17.82 3859 9.9 14.7 5.0 646.2 65.24 3.1	105-17.82 -17.82 3859 9.7 14.7 4.6 646.6 65.24 2.9	135 -17.82 3859 8.5 14.0 3.0 646.7 65.24 2.6	15-VI 166 -17.82 3859 7.4 13.6 1.2 646.5 65.24 2.7 2.7	19-VII 196 -17.82 3859 5.9 13.2 -1.3 646.4 65.24 2.8	15-VIII 227 -17.82 3859 7.2 14.5 -0.1 646.2 65.24 3	258 -17.82 3859 8.3 15.0 1.5 645.2 65.24 3.2	13-X 288 -17.82 3859 9.4 15.6 3.1 645.6 65.24 3.5	319 -17.82 3859 8.8 15.8 1.8 645.2 65.24 3.5	349 -17.82 3859 10.3 16.0 4.6 645.2 65.24 3.5
Dia del año (del 1 -1/l- al 365 -31/XII-) Latitud (grados) Altitud (m) Temperatura media °C Temperatura media de máximas °C Presión atmosférica kPa Presión atm.estimada kPa Velocidad viento -anemómetro- (m/s) Altura del anemómetro	154 15 -17.82 3859 10.7 16.2 5.2 645.6 65.24 3.5 8 8 2.71	46 -17.82 3859 10.0 15.0 5.1 645.8 65.24 3.2 8 8 2,48	74 -17.82 3859 9.9 14.7 5.0 646.2 65.24 3.1 8	105-17.82 -17.82 3859 9.7 14.7 4.6 646.6 65.24 2.9 8 8 2.25	135 -17.82 3859 8.5 14.0 3.0 646.7 65.24 2.6 8	15-VI 166 -17.82 3859 7.4 13.6 1.2 646.5 65.24 2.7 8 8 2.00	15-VII 196 -17.82 3859 5.9 13.2 -1.3 646.4 65.24 2.8 8 2.17	15-VIII 227 -17.82 3859 7.2 14.5 -0.1 646.2 65.24 3 8 8 2.22	258 -17.82 3859 8.3 15.0 1.5 645.2 65.24 3.2 8 2.48	288 -17.82 3859 9.4 15.6 3.1 645.6 65.24 3.5 8 8 2.71	15-A1 319 -17.82 3859 8.8 15.8 1.8 645.2 65.24 3.5 8 8 8 2.71	349 -17.82 3859 10.3 16.0 4.6 645.2 65.24 3.5 8 8
Dia del año (del 1 -1/l- al 365 -31/XII-) Latitud (grados) Altitud (m) Temperatura media °C Temperatura media de máximas °C Temperatura media de mínimas °C Presión atmosférica kPa Presión atmosférica kPa Velocidad viento -anemómetro- (m/s) Altura del anemómetro m Velocidad del viento a 2 m (m/s) Númera de Asera de S2 máximae (h/día)	154 15 -17.82 3859 10.7 16.2 5.2 645.6 65.24 3.5 8 2.71 13.08	46 -17.82 3859 10.0 15.0 5.1 645.8 65.24 3.2 8 2.48 2.48	74 -17.82 3859 9.9 14.7 5.0 646.2 65.24 3.1 8 2.40 12.22	105-17 105 -17.82 3859 9.7 14.7 4.6 646.6 65.24 2.9 8 8 2.25 11.7	13-V 135 -17.82 3859 8.5 14.0 3.0 646.7 65.24 2.6 8 8 2.01 11.29	15-VI 166 -17.82 3859 7.4 13.6 1.2 646.5 65.24 2.7 8 2.09 11.07	15-VII 196 -17.82 3859 5.9 13.2 -1.3 646.4 65.24 2.8 8 8 2.17 1115	15-VIII 227 -17.82 3859 7.2 14.5 -0.1 646.2 65.24 3 8 8 2.32	258 -17.82 3859 8.3 15.0 1.5 645.2 65.24 3.2 8 8 2.48 2.48	288 -17.82 3859 9.4 15.6 3.1 645.6 65.24 3.5 8 8 2.71 12.47	15-A1 319 -17.82 3859 8.8 15.8 15.8 15.8 645.2 65.24 3.5 65.24 3.5 8 8 2.71 12.94	13-AII 349 -17.82 3859 10.3 16.0 4.6 645.2 65.24 3.5 3.5 8 8 2.71 13.19
Dia del año (del 1 -1/l- al 365 -31/XII-) Latitud (grados) Altitud (m) Temperatura media °C Temperatura media de máximas °C Temperatura media de máximas °C Presión atmosférica kPa Presión atmosférica kPa Presión atm.estimada kPa Velocidad viento -anemómetro- (m/s) Altura del anemómetro m Velocidad del viento a 2 m (m/s) Número de horas de Sol máximas (h/día) Horas de Sol media (h/día)	15 -17.82 3859 10.7 16.2 5.2 645.6 65.24 3.5 8 2.71 13.08 5.84	46 -17.82 3859 10.0 15.0 5.1 645.8 65.24 3.2 8 2.48 12.69 6 65	74 -17.82 3859 9.9 14.7 5.0 646.2 65.24 3.1 8 2.40 2.40 2.22 6.77	105-17 105 -17.82 3859 9.7 14.7 4.6 646.6 65.24 2.9 8 2.25 11.71 8 35	135 -17.82 -17.82 -17.82 -17.82 -17.82 -17.82 -14.0 	15-VI 166 -17.82 3859 7.4 13.6 1.2 646.5 65.24 2.7 8 2.09 11.07 9 30	15-VII 196 -17.82 3859 5.9 13.2 -1.3 646.4 65.24 2.8 8 2.17 11.15 9 55	15-VIII 227 -17.82 3859 7.2 14.5 -0.1 646.2 65.24 3 8 2.32 2.32 11.49 9.35	15-1X 2588 -17.82 3859 8.3 15.0 1.5 645.2 65.24 3.2 8 2.488 2.48 11.97 9.02	288 -17.82 3859 9.4 15.6 3.1 645.6 65.24 3.5 8 2.71 12.47 8.71	15-A1 319 -17.82 3859 8.8 15.8 15.8 15.8 645.2 65.24 3.5 8 2.71 12.94 8.43	13-All 349 -17.82 3859 10.3 16.0 4.6 645.2 65.24 3.5 8 2.71 13.19 7.19 7.19
Dia del año (del 1 -1/- al 365 -31/XII-) Latitud (grados) Attitud (m) Temperatura media de máximas °C Temperatura media de mínimas °C Presión atmosférica kPa Presión atmosférica kPa Velocidad viento -anemómetro- (m/s) Attura del anemómetro m Velocidad del viento a 2 m (m/s) Número de horas de Sol máximas (h/día) Horas de Sol media (h/día)	10-1 15 -17.82 3859 10.7 16.2 5.2 645.6 65.24 3.5 8 2.71 13.08 5.84 0.45 .45 .45 .45 .45 .45 .45 .45	-17.82 3859 10.0 15.0 645.8 65.24 3.2 8 2.48 12.69 6.65 0.52	74 -17.82 3859 9.9 14.7 5.0 646.2 65.24 3.1 8 2.40 12.22 6.77 0.55	105-10 -17.82 3859 9.7 14.7 4.6 646.6 65.24 2.9 8 2.25 11.71 8.35 0.71	135-V 135 -17.82 3859 8.5 14.0 3.0 646.7 65.24 2.6 8 2.01 11.29 9.31 0.82	15-VI 166 -17.82 3859 7.4 13.6 1.2 646.5 65.24 2.7 8 2.09 11.07 9.300 0.84	15-VII 196 -17.82 3859 5.9 13.2 -1.3 646.4 65.24 2.8 8 2.17 11.15 9.55 0.86	15-VIII 227 -17.82 3859 7.22 14.5 -0.1 646.2 65.24 65.24 3 8 2.32 11.49 9.35 0 81	258 -17.82 3859 8.3 15.0 1.5 645.2 65.24 3.2 65.24 3.2 8 2.48 11.97 9.02 0.75	15-A 288 -17.82 3859 9.4 15.6 645.6 65.24 3.5 8 2.71 12.47 8.71 12.47 8.71 0 70	13-AI 319 -17.82 3859 8.8 15.8 1.8 645.2 65.24 3.5 65.24 3.5 8 2.71 12.94 8.43 0.65	13-XII 349 -17.82 3859 10.3 16.0 4.6 645.2 65.24 3.5 8 2.71 13.19 7.19 0.55
Dia del año (del 1 -1/l- al 365 -31/XII-) Latitud (grados) Altitud (m) Temperatura media °C Temperatura media de mínimas °C Presión atmosférica kPa Presión atm. estimada kPa Velocidad viento -anemómetro- (m/s) Altura del anemómetro m Velocidad del viento a 2 m (m/s) Número de horas de Sol máximas (h/día) Horas de Sol media (h/día) Insolación n/N	107 15 -17.82 3859 10.7 16.2 645.6 65.24 645.6 65.24 3.5 8 2.71 13.08 5.84 0.45 41.57	46 -17.82 3859 10.0 15.0 5.1 645.8 65.24 3.2 8 2.48 12.69 6.65 0.52 40.05	74 -17.82 3859 9.9 14.7 5.0 646.2 65.24 3.1 8 2.40 12.22 6.77 0.55 36.96	10-10 1055 -17.82 3859 9.7 14.7 4.6 646.6 646.6 65.24 2.9 8 2.25 11.71 8.35 0.71 3.215	13-V 135 -17.82 3859 8.5 14.0 3.0 646.7 65.24 2.6 8 2.01 11.29 9.31 0.82 27.68	15-VI 166 17.82 3859 7.4 13.6 1.2 646.5 65.24 2.7 8 2.09 11.07 9.30 0.84 2.521	15-VII 196 -17.82 3859 5.9 13.2 -1.3 646.4 65.24 2.8 8 2.17 11.15 9.55 9.55 9.58 25.99	15-VIII 227 -17.82 3859 7.2 14.5 -0.1 646.2 65.24 65.24 3 8 8 2.32 11.49 9.35 0.81 29.58	2588 -17.82 3859 8.3 15.0 1.5 645.2 65.24 8 2.48 11.97 9.02 0.75 34.30	13-A 288 -17.82 3859 9.4 15.6 3.1 645.6 65.24 65.24 8 2.71 12.47 8.71 0.70 38 26	13-AI 319 -17.82 3859 8.8 15.8 15.8 645.2 6524 3.4 3.4 2.71 12.94 8.43 0.65 40 73	13-All 349 -17.82 3859 10.3 16.0 4.6 645.2 65.24 3.5 8 2.71 13.19 7.19 7.19 0.55 41.65
Dia del año (del 1 -1/l- al 365 -31/XII-) Latitud (grados) Altitud (m) Temperatura media de máximas °C Temperatura media de máximas °C Temperatura media de mínimas °C Presión atmosférica kPa Velocidad viento -anemómetro- (m/s) Altura del anemómetro m Velocidad del viento a 2 m (m/s) Número de horas de Sol máximas (h/día) Horas de Sol media (h/día) Insolación n/N Rad. solar extraterrestre (MJ/m2·día)	107 15 -17.82 3859 10.7 16.2 5.2 645.6 65.24 3.5 8 2.71 13.08 5.84 0.45 41.57 19.67	46 -17.82 3859 10.0 15.0 5.1 645.8 65.24 3.2 8 2.48 12.69 6.65 0.52 40.05 20.51	74 -77.82 3859 9.9 14.7 5.0 646.2 65.24 6.524 6.524 12.22 6.77 0.55 36.96 19.49	10-10 105 105 3859 9.7 14.7 4.6 646.6 65.24 2.9 8 2.25 11.71 8.35 0.71 32.15 19.51	13-V 1355 3859 8.5 14.0 3.0 646.7 65.24 2.66 8 2.01 11.29 9.31 0.82 27.68 18.33	15-VI 166 -17.82 3859 7.4 13.6 1.2 646.5 65.24 2.77 8 2.09 11.07 9.30 0.84 25.21 16.90	15-VII 196 -17.82 3859 5.9 13.2 -1.3 646.4 65.24 65.24 2.8 8 2.17 11.15 9.55 0.86 25.99 17.63 17.62 17.62 17.62 17.62 10	15-VIII 227 -17.82 3859 7.2 14.5 -0.1 646.2 65.24 65.24 65.24 2.32 11.49 9.35 0.81 29.58 19.43	13-1A 2588 -17.82 3859 8.3 15.0 1.5 645.2 65.24 3.2 8 2.48 11.97 9.02 0.75 34.30 21.50	13-A 288 -17.82 3859 9.4 15.6 3.1 645.6 65.24 3.5 8 2.71 12.47 8.71 0.70 38.26 22.92	13-AI 319 -17.82 3859 8.8 15.8 15.8 645.2 65.24 3.55 8 2.71 12.94 8.43 0.65 40.75 23.46	13-All 3499 -17.82 3859 10.3 16.0 4.6 645.2 65.24 65.24 65.24 5.3 8 2.71 13.19 7.19 0.55 41.65 21.77
Dia del año (del 1 -1/l- al 365 -31/XII-) Latitud (grados) Altitud (m) Temperatura media °C Temperatura media de máximas °C Temperatura media de mínimas °C Presión atmosférica kPa Velocidad viento -anemómetro- (m/s) Altura del anemómetro m Velocidad del viento a 2 m (m/s) Número de horas de Sol máximas (h/día) Horas de Sol media (h/día) Insolación n/N Rad. solar extraterestre (MJ/m2·día) Rad. solar Rs (MJ/m2·día)	157 -17.82 3859 10.7 16.2 5.2 645.6 65.24 3.5 8 2.711 13.08 5.84 0.45 41.57 19.67 34.38	46 -17.82 3859 10.0 15.0 5.1 645.8 65.24 3.2 8 2.48 2.48 2.28 12.69 6.65 0.52 40.05 20.51 33.13	74 -77.82 3859 9.9 14.7 5.0 646.2 65.24 3.1 8 2.40 12.22 6.77 0.55 36.96 19.49 30.58	1050 1055 -17.82 3859 9.7 14.7 4.66 644.6 65.24 2.9 8 2.255 11.71 8.35 0.711 32.15 19.51 26.59	13-7 135 -17.82 3859 8.5 14.0 3.0 646.7 65.24 2.66 8 2.01 11.29 9.31 0.82 27.68 18.5 2.01 27.68 2.03 2.7.68 2.2.90	15-VI 166 17.82 3859 7.4 13.6 1.2 646.5 65.24 2.77 8 2.09 11.07 9.30 0.84 25.21 16.90 20.86	15-VII 196 -17.82 3859 5.9 13.2 -1.3 646.4 65.24 65.24 2.8 8 8 2.17 11.15 9.55 0.86 25.99 17.63 21.50	15-VIII 227 -17.82 3859 7.2 14.5 -0.1 646.2 65.24 3 8 2.32 11.49 9.35 0.81 29.58 19.43 29.47	2588 -17.82 3859 8.3 15.0 1.55 645.2 65.24 3.2 65.24 3.2 65.24 3.2 0.75 3.4.30 21.50 21.50 28.37	13-A 288 -17.82 3859 9.4 15.6 645.6 65.24 3.5 8 2.711 12.47 8.71 0.70 38.26 22.92 31.65	1374 319 -17.82 3859 8.8 15.8 15.8 18.8 645.2 65.24 3.5 8 2.71 12.94 8.43 0.65 40.73 23.46 33.69	13-All 3499 -17.82 3859 10.3 16.0 4.6 645.2 65.24 65.24 3.55 8 2.711 13.19 7.19 0.55 41.65 21.77 34.45
Dia del año (del 1 -1/l- al 365 -31/XII-) Latitud (grados) Attitud (m) Temperatura media de máximas °C Temperatura media de máximas °C Presión atmosférica kPa Presión atmosférica kPa Velocidad viento -anemómetro- (m/s) Attura del anemómetro m Velocidad del viento a 2 m (m/s) Número de horas de Sol máximas (h/día) Horas de Sol media (h/día) Insolación n/N Rad. solar extraterrestre (MJ/m2·día) Rad. dia espejado sin nubes Rso MJ/m2·día) Rad. dia despejado sin nubes Rso MJ/m2·día	15 -17.82 3859 10.7 16.2 5.2 645.6 65.24 3.5 5 8 2.71 13.08 5.8 41.57 19.67 34.38 0.42	46 -17.82 3859 10.0 5.1 645.8 65.24 3.2 8 2.48 12.69 6.65 0.52 40.05 20.51 33.13 0.49	74 -77.82 3859 9.9 14.7 5.00 646.2 65.24 3.1 8 2.40 12.22 6.77 0.55 36.96 19.49 30.58 0.51	10-10 1055 -17.82 3859 9.7 14.7 4.6 646.6 65.24 2.9 8 2.25 11.71 8.35 0.71 32.15 19.51 26.59 0.64	13-5 1355 -17.82 3859 8.5 14.0 3.0 646.7 65.24 2.66 8 2.01 11.29 9.31 0.82 27.68 18.33 22.90 0.73	15-VI 166 17.82 3859 7.4 13.6 1.2 646.5 65.24 2.7 8 2.09 11.07 9.30 0.84 25.21 16.90 20.86 0.74	15-VII 1966 3859 5.9 13.2 -1.3 646.4 65.24 65.24 2.8 8 2.17 11.15 9.55 0.86 25.99 17.63 21.50 0.76	13-VIII 227 -17.82 3859 7.2 14.5 -0.1 646.2 65.24 3 8 2.32 11.49 9.35 0.81 29.58 19.43 24.47 0.72	2588 -17.82 3859 8.3 15.0 1.5 645.2 65.24 3.2 65.24 3.2 65.24 3.2 65.24 3.2 0.75 34.30 21.50 21.50 21.50 26.77 0.67	13-A 288 -17.82 3859 9.4 15.6 645.6 65.24 3.5 8 2.71 12.47 8.71 12.47 8.71 10.70 38.26 22.92 31.65 0.63	13-319 319 -17.82 3859 8.8 15.8 15.8 15.8 1645.2 65.24 3.5 8 2.71 12.94 8.43 0.65 40.73 23.66 33.69 0.59	13-41 349 -17.82 3859 10.3 16.0 4.6 645.2 65.24 3.5 8 2.71 13.19 7.19 0.55 41.65 21.77 34.45 0.50
Dia del año (del 1 -1/- al 365 -31/XII-) Latitud (grados) Altitud (m) Temperatura media °C Temperatura media de máximas °C Presión atmosférica kPa Presión atmosférica kPa Velocidad viento -anemómetro - (m/s) Altura del anemómetro m Velocidad del viento a 2 m (m/s) Número de horas de Sol máximas (h/día) Horas de Sol media (h/día) Horas de Sol media (h/día) Horas de Sol media (h/día) Horas de Sol media (h/día) Horas nextraterrestre (MJ/m2·día) Rad. solar extraterrestre (MJ/m2·día) Rad. día despejado sin nubes Rso MJ/m2·día Factor nubosidad f Humedad relativa %	15 -17.82 3859 10.7 16.2 5.2 645.6 65.24 3.5 8 2.71 13.08 5.84 0.45 41.57 19.67 34.38 0.42 60	46 -17.82 3859 10.0 5.1 645.8 65.24 3.2 8 2.48 12.69 6.65 0.52 40.05 20.51 33.13 0.49 6.69	74 -17.82 3859 9.9 14.7 5.0 646.2 65.24 65.24 65.24 12.22 6.77 0.55 36.96 19.49 30.58 0.51 61	105 -17.82 3859 9.7 14.7 4.6 646.6 65.24 2.9 8 8 2.25 11.71 8.35 0.71 32.15 19.51 26.59 0.64 53	135 -17.82 3859 8.5 14.0 3.0 646.7 65.24 2.6 8 2.01 11.29 9.31 0.82 27.68 18.33 22.90 0.73 43	15-VI 166 -17.82 3859 7.4 13.6 1.2 646.5 65.24 2.7 8 2.09 11.07 9.30 0.84 25.21 16.90 20.86 0.74 33	15-VII 1966 -17.82 3859 5.9 13.2 -1.3 646.4 65.24 65.24 65.24 65.24 2.8 8 8 2.17 11.15 9.55 0.866 25.99 17.63 21.50 0.76 339	15-VIII 227 -17.82 3859 7.2 3859 7.2 14.5 -0.1 646.2 65.24 3 8 2.32 11.49 9.35 0.811 29.58 19.43 24.47 0.72 42	2588 -17.82 3859 8.3 15.0 1.5 645.2 65.24 65.24 65.24 65.24 65.24 0.75 3.2 8 8 2.48 11.97 9.02 0.75 3.4.30 21.50 2	288 -17.82 3859 9.4 15.6 645.6 65.24 3.5 65.24 3.5 8 2.71 12.47 8.71 0.700 38.26 22.92 31.65 0.63 44	319 319 -17.82 3859 8.8 15.8 15.8 645.2 65.24 3.5 8.8 2.71 12.94 8.43 0.655 40.73 23.46 33.69 0.59	349 349 -17.82 3859 10.3 16.0 4.6 645.2 65.24 3.5 8 8 2.71 13.19 7.19 0.55 41.65 21.77 34.45 0.50 5
Dia del año (del 1 -1/l- al 365 -31/XII-) Latitud (grados) Altitud (m) Temperatura media °C Temperatura media de máximas °C Presión atmosférica kPa Presión atmosférica kPa Velocidad viento -anemómetro- (m/s) Altura del anemómetro m Velocidad del viento a 2 m (m/s) Número de horas de Sol máximas (h/día) Horas de Sol media (h/día) Horas de Sol media (h/día) Horas de Sol media (h/día) Horas Rs (MJ/m2·día) Rad. solar extraterrestre (MJ/m2·día) Rad. día despejado sin nubes Rso MJ/m2·día Factor nubosidad f Humedad relativa %	15 -17.82 3859 10.7 16.2 5.2 645.6 65.24 3.5 8 2.71 13.08 5.84 0.45 41.57 19.67 34.38 0.42 600 1.84	46 -17.82 3859 10.0 5.1 645.8 65.24 3.2 8 2.48 12.69 6.65 0.52 40.05 20.51 33.13 0.49 6.0 1.71	74 -77.82 3859 9.9 14.7 5.0 646.2 65.24 3.1 8 2.40 12.22 6.77 0.55 36.96 19.49 30.58 0.51 61 1.67	1050 -17.82 3859 9.77 14.77 4.66 646.6 65.24 2.99 8 2.255 11.71 8.355 0.71 32.15 19.51 26.59 0.64 53 53 53 1.67	1354 1355 -17.82 3859 8.5 14.0 3.0 646.7 65.24 2.6 8 2.01 11.29 9.31 0.82 27.68 18.33 22.90 0.73 4.33 1.60	15-VI 166 -17.82 3859 7.4 13.6 1.2 646.5 65.24 2.7 8 2.09 11.07 9.30 0.84 25.21 16.90 20.86 0.74 39 9 1.56	15-VII 1966 -17.82 3859 5.9 13.2 -1.3 646.4 65.24 65.24 65.24 65.24 25.88 8 8 2.17 11.15 9.55 0.866 25.99 17.63 21.50 0.76 399 1.52	15-Vili 2277 -17.82 3859 7.2 14.55 -0.1 646.2 65.24 3 8 8 2.32 11.49 9.35 0.81 29.58 19.43 24.47 0.72 24.47 0.72 1.65	2588 -17.82 3859 8.3 15.0 1.5 645.2 65.24 3.2 8 2.48 11.97 9.02 0.75 34.30 21.50 28.37 0.67 43 1.71	13-A 288 -17.82 3859 9.4 15.6 3.1 645.6 65.24 3.5 8 2.71 0.70 38.26 0.63 31.65 0.63 0.63 44 1.77	13:19 319 3859 3859 8.8 15.8 645.2 65.24 65.24 65.271 12.94 8.43 0.655 40.73 23.466 33.69 0.59 45	349 349 -17.82 3859 10.3 16.0 4.6 645.2 65.24 3.5 65.24 3.5 8 2.71 13.19 7.19 7.19 7.19 7.19 7.19 7.19 7.19 7
Dia del año (del 1 -1/l- al 365 -31/XII-) Latitud (grados) Altitud (m) Temperatura media °C Temperatura media de máximas °C Temperatura media de mínimas °C Presión atmosférica kPa Velocidad viento -anemómetro- (m/s) Altura del anemómetro m Velocidad del viento a 2 m (m/s) Número de horas de Sol máximas (h/día) Horas de Sol media (h/día) Insolación n/N Rad. solar extraterrestre (MJ/m2·día) Rad. solar extraterrestre (MJ/m2·día) Factor nubosidad f Humedad relativa % Tensión de vapor saturación T (máxima kPa °e	15 -17.82 3859 10.7 16.2 5.2 645.6 65.24 3.5 8 2.71 13.08 5.84 0.45 41.57 19.67 34.38 0.42 60 1.84 0.42 60 1.84 0.45 1.84 0.45 1.82 1.8	46 -17.82 3859 10.0 5.1 645.8 65.24 3.22 8 2.48 12.69 6.65 0.52 40.05 20.51 33.13 0.49 6.05 20.51 33.13 0.49 6.05	74 -17.82 3859 9.9 14.7 5.0 646.2 65.24 3.1 8 2.40 12.22 6.77 0.55 36.96 19.49 30.58 0.51 6.1 1.67 0.87	105 -17.82 3859 9.7 14.7 4.6 646.6 65.24 2.9 8 2.25 11.71 8.35 0.71 32.15 19.51 26.59 0.64 53 1.67 0.85	135 -17.82 3859 8.5 14.00 3.0 646.7 65.24 2.66 8 2.01 11.29 9.31 0.82 27.68 18.33 22.90 0.73 4.3 0.0.73 4.50 0.76	15-VI 166 -17.82 3859 7.4 13.6 1.2 646.5 65.24 2.7 8 2.09 11.07 9.30 0.84 25.21 16.90 20.86 0.74 39 1.5 6.067	15-VII 1966 -17.82 3859 5.9 13.2 -1.3 646.4 65.24 2.8 8 2.17 11.15 9.55 0.86 25.99 17.63 21.50 0.76 39 1.52 0.55	15-Vili 2277 -17.82 3859 7.2 14.55 -0.1 646.2 65.24 65.24 65.24 3 8 2.32 11.49 9.35 0.81 29.58 19.43 29.58 19.43 24.47 0.72 42 42 0.61	2588 -17.82 3859 8.3 15.0 1.5 645.2 65.24 3.2 8 2.48 11.97 9.02 0.75 34.30 21.50 20.75 34.30 21.50 28.37 0.67 43 1.71 0.68	15-A 288 288 -17.82 3859 9.4 15.6 3.1 645.6 65.24 3.5 8 2.711 12.47 8.71 0.70 38.26 0.63 22.922 31.65 0.63 44 1.77 0.76	13:19 319 3859 3859 8.8 15.8 645.2 65:24 3.55 8 2.711 12.94 8.43 0.65 40.73 23:46 33.69 0.59 45 1.80 0.70	349 -17.82 3859 10.3 16.0 4.6 645.2 65.24 3.55 8 2.711 13.19 7.19 0.55 41.65 21.77 34.45 0.50 51 1.820
Dia del año (del 1 -1/l- al 365 -31/XII-) Latitud (grados) Attitud (m) Temperatura media de máximas °C Temperatura media de mínimas °C Presión atmosférica kPa Presión atmosférica kPa Presión atm. estimada kPa Velocidad viento -anemómetro- (m/s) Attura del anemómetro m Velocidad del viento a 2 m (m/s) Número de horas de Sol máximas (h/día) Horas de Sol media (h/día) Horas de Sol media (h/día) Rad. solar extraterrestre (MJ/m2·día) Rad. solar extrat	15 -17.82 3859 10.7 16.2 5.2 645.6 65.24 3.5 8 2.71 13.08 5.84 0.45 41.57 19.67 34.38 0.42 60 1.84 0.82	46 -17.82 3859 10.0 15.0 5.1 645.8 65.24 3.2 8 2.48 12.69 6.65 0.552 20.51 33.13 0.49 60 1.71 0.49 60 7.7	74 -17.82 3859 9.9 14.7 5.0 646.2 65.24 3.11 8 2.40 12.22 6.77 0.55 36.96 19.49 30.55 36.96 19.49 30.55 30.51 61 1.67 0.87	1050 -17.82 3859 9.7 14.7 4.6 646.6 646.6 65.24 2.9 8 2.25 11.71 8.35 0.71 19.51 20.59 0.64 53 1.67 0.657 0.657	135 -17.82 3859 8.5 14.00 646.7 65.24 2.66 8 2.01 11.29 9.31 0.82 27.68 18.33 22.90 0.73 4.3 1.60 0.73 0.76 0.751	15-VI 166 -17.82 3859 7.4 13.6 1.2 646.5 65.24 2.7 8 2.09 11.07 9.30 0.84 25.21 16.90 20.86 0.74 39 1.56 0.67 0.43	15-VII 1966 -17.82 3859 5.9 13.22 -1.3 646.4 65.24 2.17 11.15 9.55 9.55 9.55 9.55 9.7.63 21.50 0.766 399 1.52 0.55 0.40	15-Vili 2277 -17.82 3859 7.2 14.55 -0.1 646.2 65.24 3 8 8 2.32 11.49 9.35 9.35 19.43 24.47 0.72 422 1.65 0.61 0.47	15-14 2588 -17.82 3859 8.33 15.0 1.5 645.2 645.2 645.2 645.2 645.2 8 2.488 11.97 9.02 0.75 0.75 0.75 4.3 0.71 0.67 4.3 0.71 0.67 4.3 0.71 0.67 4.3 0.71 0.67 4.3 0.71 0.67 4.3 0.71 0.67 4.3 0.71 0.67 4.3 0.71 0.67 4.3 0.71 0.75 0.7	15.4 288 -17.82 3859 9.4 15.6 3.1 645.6 65.24 3.5 8 2.711 12.47 8.711 0.700 38.26 2.92 31.65 0.633 44 1.77 0.760 0.561	319 319 -17.82 3859 8.8 15.8 645.2 65.24 3.55 8 2.71 12.94 8.43 0.65 40.73 23.46 33.69 0.59 45 1.80 0.70 0.56	349 349 -17.82 3859 10.3 16.0 4.6 645.2 65.24 3.55 8 2.71 13.19 7.19 0.55 41.65 21.77 34.45 21.77 34.45 51.77 34.45 0.55 51 1.82 0.85 0.68
Dia del año (del 1 -1/l- al 365 -31/XII-) Latitud (grados) Attitud (m) Temperatura media de máximas °C Temperatura media de mínimas °C Presión atmosférica kPa Presión atmosférica kPa Velocidad viento -anemómetro- (m/s) Attura del anemómetro m Velocidad del viento a 2 m (m/s) Número de horas de Sol máximas (h/día) Horas de Sol media (h/día) Horas de Sol media (h/día) Horas de Sol media (h/día) Horas de Sol media (h/día) Rad. solar extraterrestre (MJ/m2·día) Rad. solar extraterreste (MJ/m2·día) Rad. solar extraterreste (MJ/m2·día) Rad. solar extraterreste (MJ/m2·día) Rad. solar extraterreste (MJ/m2·día) Rad. día despejado sin nubes Rso MJ/m2·día Factor nubosidad f Humedad relativa % Tensión de vapor saturación T (máxima kPa "e Tensión de vapor saturación T (mínima) kPa "e	15 -17.82 3859 10.7 16.2 5.2 645.6 645.6 65.24 3.5 8 2.711 13.08 5.84 0.45 41.57 19.67 34.38 0.42 0.45 0.45 0.45 0.55	46 -17.82 3859 10.0 15.0 5.1 645.8 65.24 65.24 65.24 3.2 8 2.48 12.69 6.65 0.52 20.51 33.13 0.49 60 1.71 0.88 0.77 0.52	74 -17.82 3859 9.9 9.14.7 5.0 646.2 65.24 3.1 8 2.400 12.22 6.77 0.55 36.96 19.49 30.58 0.51 61 1.67 0.78 0.51 0.78 0.50	1050 -17.82 3859 9.7 14.7 4.6 646.6 65.24 2.9 8 2.255 11.71 8.35 0.71 32.15 19.51 26.59 0.64 53 1.67 0.85 0.65 0.55	135 -17.82 3859 8.5 14.0 3.0 646.7 65.24 2.01 11.29 9.31 0.82 27.68 18.33 22.90 0.73 43 1.60 0.76 0.51 0.67	15-VI 166 -17.82 3859 7.4 13.6 1.2 646.5 65.24 2.7 8 2.09 11.07 9.30 0.84 25.21 16.90 20.86 0.74 39 1.56 0.67 0.43 0.68	19-40 1966 -17.82 3859 5.9 13.2 -1.3 646.4 2.8 8 2.17 11.15 9.55 0.86 25.99 17.63 21.50 0.766 0.765 0.455 0.400 0.63	15-Vili 2277 -17.82 38599 7.2 14.55 -0.1 6646.2 6524 3 8 8 2.322 11.49 9.35 0.81 29.58 19.43 24.47 0.72 422 1.65 0.61 0.47 0.65	2588 -17.82 3859 8.33 15.0 1.5 645.2 65.24 3.2 8 2.488 2.488 2.488 2.488 2.488 2.483 2.483 2.483 2.483 2.433 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	13-A 288 288 -17.82 3859 9.4 15.6 3.1 645.6 65.24 2.71 8.75 8 2.71 8.71 0.70 38.26 2.2.92 31.65 0.63 41.77 0.766 0.766 0.71	13:19 319 3859 3859 8.8 15.8 15.8 165.24 65.24 65.24 3.5 8 2.711 12.94 8.43 0.653 23.46 33.69 0.559 1.80 0.700 0.566 0.68	349 -17.82 3859 10.3 16.0 4.6 645.2 65.24 3.5 8 2.711 3.5 8 2.711 3.5 8 2.711 3.5 2.711 3.5 2.711 3.5 2.711 3.445 0.50 51 1.82 0.68 0.68
Dia del año (del 1 -1/l- al 365 -31/XII-) Latitud (grados) Altitud (m) Temperatura media °C Temperatura media de máximas °C Presión atmosférica kPa Presión atm. estimada kPa Velocidad viento -anemómetro- (m/s) Altura del anemómetro m Velocidad del viento a 2 m (m/s) Número de horas de Sol máximas (h/dia) Horas de Sol media (h/dia) Rad. solar extraterrestre (MJ/m2·dia) Rad. solar extraterrestre (MJ/m2·dia) Rad. día despejado sin nubes Rso MJ/m2·dia Factor nubosidad f Humedad relativa % Tensión de vapor saturación T (máxima kPa "e Tensión de vapor saturación t (mínima) kPa "e Tensión de vapor real kPa "ea" e ^o -ea	15 -17.82 3859 10.7 16.2 5.2 645.6 65.24 3.5 8 2.71 13.08 5.84 0.45 41.57 34.38 0.45 41.57 34.38 0.42 60 0 1.84 0.88 0.82 0.55 5 0.21	46 -17.82 3859 10.0 5.1 645.8 65.24 3.2 8 2.48 12.69 6.65 0.52 40.05 20.51 33.13 0.49 600 1.71 0.88 0.77 0.52 0.22	74 -17.82 3859 9.9 14.7 5.0 646.2 65.24 3.1 8 2.40 12.22 6.77 0.55 36.96 19.49 30.58 0.51 61 1.67 0.87 0.78 0.50 0.22	1050 -17.82 3859 9.7 14.7 4.6 646.6 65.24 2.9 8 2.25 11.71 8.35 0.71 32.15 19.51 26.59 0.64 53 1.67 0.85 0.67 0.59 0.23	13-5V 1355 -17.82 3859 8.5 14.00 3.00 646.7 65.24 2.66 8 2.01 11.29 9.31 0.82 27.68 18.33 22.90 0.73 433 22.90 0.73 433 1.60 0.76 0.51 0.67 0.24	15-VI 166 -17.82 3859 7.4 13.6 1.2 646.5 65.24 2.7 8 2.09 11.07 9.30 0.84 25.21 16.90 20.86 0.74 39 1.56 0.67 0.43 0.68 0.25	15-VII 1966 -17.82 3859 5.9 13.2 -1.3 646.4 65.24 2.88 8 2.17 11.15 9.55 0.86 25.99 17.63 21.50 0.76 39 9 1.52 0.55 0.40 0.63 3 0.25	15-Vili 227 -17.82 3859 7.2 14.5 -0.1 646.2 65.24 3 8 2.32 11.49 9.35 0.81 29.58 19.43 24.47 0.72 422 1.65 0.61 0.47 0.65 0.24	2588 -17.82 3859 8.3 15.0 1.5 645.2 65.24 8 2.48 11.97 9.02 0.75 34.30 21.50 28.37 0.67 43 3.1.71 0.68 0.51 0.68 0.24	15-A 288 -17.82 3859 9.4 15.6 3.1 645.6 65.24 8 2.717 8.71 0.700 38.26 22.92 31.65 0.63 44 1.77 0.766 0.761 0.711 0.24	13:19 319 3859 3859 8.8 15.8 15.8 645.2 6524 65271 12.94 8.43 0.655 40.73 23.46 33.69 0.59 45 1.80 0.70 0.566 0.680 0.24	349 349 -17.82 3859 10.3 16.0 4.6 645.2 65.24 3.5 8 2.71 13.19 0.55 41.65 21.77 34.45 0.50 51 1.82 0.85 0.68 0.68 0.68 0.62
Dia del año (del 1 -1/l- al 365 -31/XII-) Latitud (grados) Altitud (m) Temperatura media °C Temperatura media de máximas °C Temperatura media de mínimas °C Presión atmosférica kPa Velocidad viento -anemómetro- (m/s) Altura del anemómetro m Velocidad del viento a 2 m (m/s) Número de horas de Sol máximas (h/día) Horas de Sol media (h/día) Insolación n/N Rad. solar extraterrestre (MJ/m2·día) Rad. solar extraterrestre (MJ/m2·día) Rad. solar extraterrestre (MJ/m2·día) Rad. solar Rs (MJ/m2·día) Rad. di despejado sin nubes Rso MJ/m2·día Factor nubosidad f Humedad relativa % Tensión de vapor saturación t (mínima) kPa "e Tensión de vapor real kPa "ea" e ^o -ea Emisividad neta (a1+b1*ea*0.5) Albedo	15 -17.82 3859 10.7 16.2 5.2 645.6 65.24 3.5 8 2.71 13.08 5.84 0.45 41.57 19.67 34.38 0.42 60 1.844 0.88 0.82 0.55 0.21 0.23	46 -17.82 3859 10.0 5.1 645.8 65.24 3.22 8 2.48 12.69 0.655 0.52 40.05 20.51 33.13 0.49 6.05 20.51 1.71 0.88 0.77 0.52 0.22 0.23	74 -17.82 3859 9.9 14.7 5.0 646.2 65.24 3.1 8 2.40 12.22 6.77 0.55 36.96 19.49 30.58 0.51 6.77 0.55 36.96 19.49 19.49 30.58 0.51 6.77 0.78 0.78 0.78 0.22 0.23	1050 -17.82 3859 9.7 14.7 4.6 646.6 65.24 2.9 8 2.25 11.71 8.35 0.711 32.15 19.511 26.59 0.64 53 0.67 0.85 0.67 0.85 0.23 0.23 0.23	135 -17.82 3859 8.5 14.00 3.0 646.7 65.24 2.66 8 2.01 11.29 9.31 0.82 27.68 18.33 22.90 0.73 43 1.60 0.76 0.51 0.67 0.24 4 0.23	15-VI 166 -17.82 3859 7.4 13.6 1.2 646.5 65.24 2.7 8 2.09 11.07 8 2.09 11.07 9.30 0.84 25.21 16.90 0.20.86 0.74 39 1.56 0.67 0.43 0.68 0.25 0.23	15-VII 1966 -17.82 3859 5.9 13.2 -1.3 646.4 65.24 2.8 8 2.17 11.15 9.55 0.86 25.99 17.63 21.50 0.76 39 1.52 0.55 0.40 0.63 0.255 0.23	15-Vili 227 -17.82 3859 7.2 14.55 -0.1 646.2 652.4 38 2.32 11.45 9.355 0.811 29.58 19.433 24.47 0.722 422 1.665 0.611 0.477 0.234	2588 -17.82 3859 8.3 15.0 1.5 645.2 65.24 3.2 8 8 2.48 11.97 9.02 0.75 34.30 21.50 28.37 0.67 43 34.30 21.50 28.37 0.67 43 1.71 1.0.68 0.51 0.688 0.244 0.23	15-A 288 -17.82 3859 9.4 15.6 3.1 645.6 65.24 3.5 8 2.711 12.47 8.71 0.700 38.26 2.31.65 0.633 444 1.777 0.766 0.761 0.244 0.233	13:19 319 3859 3859 8.8 15.8 645.2 65:24 3.55 8 2.71 12.94 8.3.69 0.65 40.73 23:46 33:69 0.59 45 1.80 0.869 0.70 0.56 0.68 0.244 0.23	349 349 -17.82 3859 10.3 16.0 4.6 645.2 65.24 3.55 8 2.71 13.19 7.19 0.55 41.65 21.77 34.45 0.50 51 1.82 0.85 0.68 0.65 0.22 0.23
Dia del año (del 1 -1/l- al 365 -31/XII-) Latitud (grados) Attitud (m) Temperatura media °C Temperatura media de mínimas °C Temperatura media de mínimas °C Presión atmosférica kPa Presión atmosférica kPa Velocidad viento -anemómetro- (m/s) Attura del anemómetro m Velocidad del viento a 2 m (m/s) Número de horas de Sol máximas (h/día) Horas de Sol media (h/día) Horas de Sol media (h/día) Horas de Sol media (h/día) Rad. solar extraterrestre (MJ/m2·día) Rad. solar extraterrestre (MJ/m2·	15 -17.82 3859 10.7 16.2 5.2 645.66 65.24 3.5 8 2.711 13.08 5.84 0.455 41.57 19.67 34.38 0.42 60 1.84 0.82 0.55 0.21 0.23 15.15	46 -17.82 3859 10.0 15.0 5.1 645.8 65.24 3.2 8 2.48 12.69 6.65 0.52 40.05 20.51 33.13 0.49 60 1.71 0.82 0.77 0.52 0.23 0.23 15.79	17-14 -17.82 3859 9.9 9.14.7 5.0 646.2 65.24 3.1 8 2.40 12.22 6.77 0.55 36.96 19.49 30.58 0.51 0.78 0.50 0.78 0.50 0.23 15.00	10:5 -17.82 3859 9.7 14.7 4.6 646.6 646.6 65.24 2.9 8 2.25 11.71 8.35 0.71 32.15 19.51 19.51 19.51 26.59 0.63 1.67 0.85 0.67 0.59 0.23 0.23 0.23 15.02	13-5V 1355 -17.82 3859 8.55 14.0 3.0 646.7 65.24 2.01 11.29 9.31 0.82 2.7.68 18.33 22.90 0.73 1.60 0.76 0.51 1.00 0.76 0.51 1.00 0.76 0.51 1.00 0.76 0.51 1.00 0.76 0.51 1.00 0.76 0.51 1.00 0.76 0.51 1.00 0.76 0.51 1.00 0.76 0.51 1.00 0.76 0.51 1.00 0.51 1.00 0.51 0.51 0.51 0.51	15-VI 166 -17.82 3859 7.4 13.6 1.2 646.5 65.24 2.77 8 2.09 11.07 9.30 0.84 25.21 16.90 20.86 0.68 0.25 0.43 0.68 0.25 0.23 13.01	15-VII 1966 -17.82 3859 5.9 13.2 -1.3 646.4 2.8 8 2.17 465.24 2.8 8 2.17 11.15 9.55 9.55 0.86 25.99 17.63 21.50 0.750 0.55 0.40 0.63 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.2	15-Vili 227 -17.82 3859 7.2 14.55 -0.1 646.2 65.24 65.24 9.35 0.81 29.58 19.43 24.47 0.65 0.61 0.47 0.65 0.24 0.23 14.96	2588 -17.82 3859 8.33 15.0 1.5 645.2 65.24 65.24 65.24 65.24 65.24 65.24 65.24 65.24 7.9.02 0.75 34.30 21.50 51.50 21.50	13-A 288 288 288 -17.82 3859 9.4 15.6 3.1 645.6 65.24 3.5 8 2.711 12.47 8.71 0.703 38.26 22.92 31.65 0.65 0.44 1.77 0.760 0.711 0.233 17.65	13:19 319 3859 3859 8.8 15.8 15.8 15.8 65.24 65.24 65.24 65.24 3.5 8 2.71 12.94 8.43 0.65 40.73 23.46 33.69 0.59 1.80 0.756 0.68 0.24 0.23 18.06	13:40 349 -17.82 3859 10.3 16.0 4.6 645.2 65.24 3.5 8 2.71 13.19 7.19 0.55 21.77 34.45 0.50 51 1.82 0.850 0.685 0.62 0.233 16.77
Dia del año (del 1 -1/l- al 365 -31/XII-) Latitud (grados) Attitud (m) Temperatura media de máximas °C Temperatura media de mínimas °C Presión atmosférica kPa Presión atmosférica kPa Velocidad viento -anemómetro- (m/s) Attura del anemómetro m Velocidad del viento a 2 m (m/s) Número de horas de Sol máximas (h/día) Horas de Sol media (h/día) Horas de Sol media (h/día) Horas de Sol media (h/día) Horas de Sol media (h/día) Rad. solar extraterrestre (MJ/m2·día) Rad. solar extraterrestre (MJ/m2·día) Rad. solar extraterreste (MJ/m2·día) Rad. solar extraterreste (MJ/m2·día) Rad. solar extraterreste (MJ/m2·día) Rad. día despejado sin nubes Rso MJ/m2·día Factor nubosidad f Humedad relativa % Tensión de vapor saturación T (máxima kPa "e Tensión de vapor saturación T (máxima kPa "e Tensión de vapor real kPa "ea" eº-ea Emisividad neta (a1+b1*ea*0.5) Albedo Radiación neta entrante Rns (solar) MJ/m2·día Radiación neta saliente Rnl (onda larga) MJ/m2·día	15 -17.82 3859 10.7 16.2 5.2 645.6 645.6 65.24 3.5 8 2.711 13.08 5.84 0.45 41.57 19.67 34.38 0.42 0.45 0.21 0.23 0.55 0.21 0.55 0.28 0.55 0.21 0.55 0.28 0.55 0.5	46 -17.82 3859 10.0 15.0 5.1 645.8 65.24 65.24 65.24 8 2.48 2.248 12.69 6.65 0.52 40.05 20.51 33.13 0.49 60 1.71 0.88 0.72 0.22 0.23 15.79 3.33	74 -17.82 3859 9.99 14.7 5.0 646.2 65.24 3.1 8 2.400 12.22 6.77 0.55 36.96 19.49 30.58 0.51 611 1.67 0.87 0.55 36.96 19.49 30.58 0.51 611 1.67 0.87 0.52 0.22 0.23 15.00 0.22 0.23	10-10 1055 -17.82 3859 9.7 14.7 4.6 646.6 65.24 2.9 8 2.255 11.71 8.35 0.71 32.15 19.51 26.59 0.64 53 1.67 0.85 0.65 0.55	13-5V 1355 -17.82 3859 8.5 14.00 3.0 646.7 65.24 2.01 11.29 9.31 0.82 27.68 18.33 22.90 0.73 433 1.60 0.76 0.24 0.77 0.24 0.23 14.12 5.43	15-VI 166 -17.82 3859 7.4 13.6 1.2 646.5 65.24 2.77 8 2.09 11.07 9.30 0.84 25.21 16.90 20.86 0.74 399 1.56 0.67 0.43 0.68 0.25 0.23 13.01 5.61 5.61	19-VII 1966 -17.82 3859 5.9 13.2 -1.3 646.4 2.8 8 2.17 11.15 9.55 0.86 25.99 17.63 21.50 0.76 39 1.52 0.55 0.45 0.45 0.45 0.45 0.45 0.45 0.45	15-Vili 227 -17.82 3859 7.2 14.55 -0.1 646.2 65.44 3 8 2.32 11.49 9.35 0.81 29.58 19.43 24.47 0.61 0.61 0.61 0.64 0.24 0.65 0.24 0.535	2588 -17.82 3859 8.33 15.0 1.5 645.2 65.24 3.2 8 2.48 11.97 9.02 0.75 34.30 21.50 28.37 0.67 43 1.71 0.68 0.24 0.53 0.50 0.24 0.55 0.50 0.55 0.50 0.55 0.50 0.55 0.50 0.55 0.50 0.55 0.50 0.55 0.50 0.55 0.50 0.55 0.50 0.55 0.50 0.550	13-A 288 -17.82 3859 9.4 15.6 3.1 645.6 65.24 2.71 2.71 2.71 2.71 3.5 8 2.71 3.5 8 2.71 12.47 8.71 0.70 38.26 0.36.26 0.70 38.26 0.70 38.26 0.70 38.26 0.70 38.26 0.70 38.26 0.76 0.76 0.76 0.71 0.24 0.23 17.65 4.63	13:19 319 319 -17.82 3859 8.8 15.8 15.8 15.8 65.24 65.24 65.24 65.24 65.24 3.55 8 2.71 12.94 8.43 0.65 40.73 23.46 33.69 0.59 4.55 1.80 0.70 0.668 0.24 0.23 18.06 4.32	13:40 349 -17.82 3859 10.3 16.0 4.6 645.2 65.24 65.25 8 2.711 13.19 7.19 0.55 21.77 34.45 0.50 511 1.82 0.85 0.665 0.22 0.23 16.77 3.59
Dia del año (del 1 -1/l- al 365 -31/XII-) Latitud (grados) Altitud (m) Temperatura media °C Temperatura media de máximas °C Presión atmosférica kPa Presión atmosférica kPa Velocidad viento -anemómetro- (m/s) Altura del anemómetro m Velocidad del viento a 2 m (m/s) Número de horas de Sol máximas (h/dia) Horas de Sol media (h/dia) Rad. solar extraterrestre (MJ/m2·dia) Rad. solar extraterrestre (MJ/m2·dia) Rad. día despejado sin nubes Rso MJ/m2·dia Factor nubosidad f Humedad relativa % Tensión de vapor saturación T (máxima kPa "e Tensión de vapor saturación T (mínima) kPa "e Tensión de vapor real kPa "ea" e ^o -ea Emisividad neta (a1+b1*ea^0.5) Albedo Radiación neta saliente Rnl (onda larga) MJ/m Flujo de calor en el suelo (período de mes)	15 -17.82 3859 10.7 16.2 5.2 645.6 65.24 3.5 8 2.71 13.08 5.84 0.45 41.57 19.67 34.38 0.42 600 1.84 0.88 0.42 600 1.84 0.88 0.42 600 1.84 0.88 0.42 600 1.84 0.88 0.42 600 1.84 0.88 0.42 600 1.84 0.88 0.42 600 1.84 0.88 0.42 600 1.84 0.88 0.42 600 1.84 0.88 0.42 600 1.84 0.88 0.42 600 1.84 0.88 0.42 600 1.84 0.88 0.42 0.02 1.55 0.21 0.23 1.55 0.21 0.23 1.55 0.21 0.23 1.55 0.21 0.23 1.55 0.24 0.23 1.55 0.21 0.23 1.55 0.21 0.23 1.55 0.24 0.23 1.55 0.24 0.23 1.55 0.24 0.23 1.55 0.24 0.23 1.55 0.24 0.23 1.55 0.24 0.23 1.55 0.24 0.23 1.55 0.24 0.23 1.55 0.24 0.23 1.55 0.24 0.23 1.55 0.24 0.23 1.55 0.24 0.23 1.55 0.24 0.24 0.55 0.55	46 -17.82 3859 10.0 15.0 5.1 645.8 65.24 3.2 8 2.48 12.69 6.65 20.51 33.13 0.49 6.65 20.51 33.13 0.49 60 1.71 0.88 0.77 0.52 0.22 0.23 15.79 3.33 3.53 3.53 3.53 3.53 3.53 3.53 3.5	17.4 -17.82 3859 9.9 9.14.7 5.0 646.2 65.24 3.1 8 2.40 12.22 6.77 0.55 36.96 19.49 30.58 0.51 61 1.67 0.87 0.50 0.22 0.23 15.00 3.48 -0.03 -0.03	10-10 105 -17.82 3859 9.7 14.7 4.6 646.6 6446.6 65.24 2.9 8 2.25 11.71 8.35 0.71 32.15 19.51 26.59 0.64 53 1.67 0.85 0.67 0.85 0.67 0.59 0.23 1.52 4.54 -0.55 0.67 0.52 0.23 1.52 0.55 0.5	13-5V 1355 -17.82 3859 8.5 14.00 3.00 646.7 65.24 2.66 8 2.011 11.29 9.31 0.82 27.68 18.33 22.90 0.73 433 1.60 0.76 0.51 0.67 0.24 0.23 14.12 5.43 -0.16 5.5 -0.16 5.5 -0.16 -0.16 -0.15 -0.16 -0.15 -0.16 -0.15	15-VI 166 -17.82 3859 7.4 13.6 1.2 646.5 65.24 2.09 11.07 8 2.09 11.07 9.30 0.84 25.21 16.90 20.86 0.74 39 9 1.56 0.67 0.43 0.68 0.25 0.23 13.01 5.61 -0.18 -0.1	15-VII 1966 -17.82 3859 5.9 13.2 -1.3 646.4 2.8 8 8 2.17 11.15 9.55 0.86 25.99 17.63 21.50 0.76 39 9 39 1.52 0.55 0.40 0.63 3 0.25 0.23 13.57 5.67 -0.01	15-Vili 227 -17.82 3859 7.2 14.55 -0.1 646.2 65.24 3 8 2.32 11.49 9.35 0.81 29.58 19.43 24.47 0.65 0.61 0.47 0.65 0.24 0.65 0.23 14.96 5.35 0.616	2588 -17.82 3859 8.3 15.0 1.5 645.2 65.24 65.24 645.2 65.24 8 2.448 3.2 8 2.448 3.2 9.02 0.75 34.300 21.50 28.37 0.67 433 1.71 0.688 0.24 0.23 16.555 4.985 0.24 0.23 16.555 4.985 0.24 0.255 0.24 0.255 0.24 0.23 0.24 0.23 0.24 0.23 0.24 0.23 0.255 0.24 0.24 0.23 0.24 0.255 0.24 0.24 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	15-A 288 -17.82 3859 9.4 15.6 3.1 645.6 65.24 8 2.747 8.71 0.70 38.26 0.70 38.26 0.70 38.26 0.70 38.26 0.63 444 1.77 0.76 0.51 0.76 0.76 0.71 0.24 0.23 17.65 4.63 0.04	13:19 319 319 -17.82 3859 8.8 15.8 15.8 645.2 65.24 65.24 65.25 8 2.71 12.94 8.43 0.655 40.73 23.46 33.69 0.59 45 1.80 0.70 0.56 0.68 0.24 0.23 18.06 4.32 0.070	13-XII 349 -17.82 3859 10.3 16.0 4.6 645.2 65.24 65.25 8 2.711 13.19 7.19 0.555 41.65 21.77 34.45 0.855 0.685 0.622 0.233 16.79 3.59 0.13
Dia del año (del 1 -1/l- al 365 -31/XII-) Latitud (grados) Altitud (m) Temperatura media °C Temperatura media de máximas °C Presión atmosférica kPa Presión atmosférica kPa Velocidad viento -anemómetro- (m/s) Altura del anemómetro m Velocidad del viento a 2 m (m/s) Número de horas de Sol máximas (h/día) Horas de Sol media (h/día) Rad. solar extraterrestre (MJ/m2·día) Rad. solar extraterrestre (MJ/m2·día) Rad. día despejado sin nubes Rso MJ/m2·día Factor nubosidad f Humedad relativa % Tensión de vapor saturación T (máxima kPa "e °-ea Emisividad neta (a1+b1*ea*0.5) Albedo Radiación neta entrante Rns (solar) MJ/m2·día Radiación neta entente Rns (solar) MJ/m2·día Radiación neta esaliente Rnl (onda larga) MJ/m Flujo de calor en el suelo (período de mes) Temperatura media del mes previo (mes i-1) °C	15 -17.82 3859 10.7 16.2 5.2 645.6 65.24 3.5 8 2.71 13.08 5.84 0.45 41.57 19.67 34.38 0.42 60 1.84 0.42 60 1.84 0.82 0.55 0.21 0.23 15.15 2.87 -0.02 10.030	46 -17.82 3859 10.0 5.1 645.8 65.24 3.2 8 2.48 12.69 6.65 0.52 40.05 20.51 33.13 0.49 6.05 20.51 33.13 0.49 6.05 20.51 33.13 0.49 6.05 20.52 40.05 20.51 33.13 0.49 6.05 20.51 33.13 0.49 6.05 20.52 20.51 33.13 0.49 6.05 20.52 20.	17.4 -17.82 3859 9.9 14.7 5.0 646.2 65.24 3.11 8 2.40 12.22 6.77 0.55 36.96 19.49 30.58 0.511 6.61 1.67 0.87 0.78 0.520 0.23 15.00 3.40.03	1050 -17.82 3859 9.7 14.7 4.6 646.6 65.24 2.9 8 2.25 11.71 8.35 0.71 32.15 19.51 26.59 0.64 53 0.64 53 0.67 0.85 0.67 0.59 0.23 1.6.7 0.59 0.23 1.5.02 4.54 5.02 4.55 5.02 5.02 5.05 5.05 5.555 5.5555 5.555 5.5555 5.5555 5.5555 5.5555 5.5555 5.5555 5.55	13-5V 1355 -17.82 3859 8.5 14.00 3.00 646.7 65.24 2.66 8 2.011 11.29 9.31 0.82 27.68 18.33 22.90 0.73 433 22.90 0.73 433 22.90 0.73 443 1.60 0.67 0.24 4.12 5.43 14.12 5.43 -0.16 9.65 -0.55 -	15-VI 1666 -17.82 3859 7.4 13.66 1.2 646.5 65.24 2.77 8 2.09 11.07 8 2.09 11.09 1.566 0.67 0.43 0.686 0.74 39 1.566 0.677 0.433 0.686 0.255 0.233 13.011 5.618 8.555 0.233 13.011 5.618 8.555 0.233 13.011 5.618 8.555 0.233 13.011 5.618 8.555 0.233 13.011 5.618 1.2188 1.21	15-VII 1966 -17.82 3859 5.9 13.2 -1.3 646.4 65.24 2.8 8 2.17 11.15 0.86 25.99 17.63 21.50 0.76 39 1.52 0.55 0.40 0.765 0.23 1.52 0.23 1.57 -0.01 7.407	15-Vili 227 -17.82 3859 7.2 14.55 -0.1 646.2 65.24 3 8 2.32 11.45 0.81 29.35 0.81 29.35 0.81 29.35 0.81 24.47 0.72 42 1.65 0.61 0.24 0.23 14.96 5.35 0.16 5.93	2588 -17.82 3859 8.3 15.0 1.5 645.2 65.24 8 2.48 11.97 9.02 0.75 34.30 21.50 28.37 0.67 4.3 34.30 24.50 28.37 0.67 4.3 1.71 0.68 0.24 0.23 16.55 4.98 0.15 7.20 7.20	15-A 288 -17.82 3859 9.4 15.6 3.1 645.6 65.24 8 2.717 8.71 0.70 38.26 22.92 31.65 0.63 444 1.777 0.76 0.56 0.76	13-31 319 319 319 -17.82 3859 88 15.8 645.2 65.24 35.8 2.71 12.94 8.43 0.65 40.73 23.46 0.59 45 1.80 0.70 0.56 0.68 0.23 18.06 4.023 18.06 4.023 18.06 4.355	349 349 3459 3859 10.3 16.0 4.6 645.2 65.24 3.55 8 2.71 13.19 0.55 21.77 34.45 0.50 51 1.82 0.85 0.688 0.688 0.620 0.221 0.231 16.77 3.880 0.13 8.880
Dia del año (del 1 -1/l- al 365 -31/XII-) Latitud (grados) Attitud (m) Temperatura media de máximas °C Temperatura media de máximas °C Temperatura media de mínimas °C Presión atmosférica kPa Presión atmosférica kPa Velocidad viento -anemómetro- (m/s) Attura del anemómetro m Velocidad del viento a 2 m (m/s) Número de horas de Sol máximas (h/día) Horas de Sol media (h/día) Horas de Sol media (h/día) Horas de Sol media (h/día) Rad. solar extraterrestre (MJ/m2·día) Rad. solar extraterrestrestre (MJ/m2·día) Rad. solar extraterrestrestrestrestrestrestrestrestrestr	15 -17.82 3859 10.7 16.2 5.2 645.66 65.24 3.5 8 2.71 13.08 5.84 0.45 41.57 19.67 34.38 0.42 60 1.84 0.82 0.55 0.21 0.23 15.15 2.87 -0.02 0.30 10.30	46 -17.82 3859 10.0 15.0 5.1 645.8 65.24 3.2 8 2.48 12.69 6.65 0.52 20.51 33.13 0.49 60 1.71 0.52 0.22 0.23 15.79 3.33 -0.06 10.70 9.85 2.05	13-m 74 -17.82 3859 9.9 9.9 14.7 5.0 646.2 65.24 3.1 8 2.40 12.22 6.77 0.55 36.96 19.49 30.58 0.511 61 1.67 0.78 0.50 0.23 15.00 3.48 -0.03 9.65	10-10 1055 -17.82 3859 9.7 14.7 4.6 646.6 646.6 65.24 2.9 8 2.255 11.71 8.355 0.715 19.51 19.51 19.51 19.51 20.59 0.67 0.59 0.23 0.67 0.59 0.23 15.02 4.54 -0.05 9.85 8.500 9.855 9.855 8.500 9.855 8.500 9.855 8.500 9.855 8.500 9.855 8.500 9.855 8.500 9.855 8.500 9.855 8.500 9.855 8.500 9.855 8.500 9.855 8.500 9.855 8.500 9.855 8.500 9.855 8.500 9.855 9	13-5V 1355 -17.82 3859 8.55 14.0 3.0 646.7 65.24 2.66 8 2.01 11.29 9.31 0.82 2.7.68 18.33 22.90 0.73 1.60 0.76 0.51 0.67 0.24 0.51 0.67 0.24 0.51 0.67 0.24 0.51 0.67 0.24 0.54 0.54 0.55	15-VI 1666 -17.82 3859 7.4 13.66 1.2 646.5 65.24 2.77 8 2.09 11.07 9.30 0.84 25.21 16.90 20.86 0.68 0.25 0.43 0.68 0.25 0.23 13.01 5.61 -0.15 .61 -0.15 .65.24 .65.24 .65.24 .65.24 .65.24 .65.25 .65.24 .65.25 .65.24 .65.25 .65.24 .65.25 .55.25.25 .55.25.25 .55.25.25 .55.25.5	19-VII 1966 -17.82 3859 5.9 13.2 -1.3 646.4 2.8 8 2.17 11.15 9.55 9.55 0.86 25.99 17.63 21.50 0.76 39 1.52 0.55 0.40 0.63 0.25 0.55 0.40 0.63 39 1.52 0.55 0.40 0.63 0.25 0.40 0.63 0.25 0.45 0.40 0.63 0.25 0.45 0.40 0.63 0.25 0.45 0.40 0.75 0.40 0.55 0.40 0.55 0.40 0.55 0.40 0.55 0.40 0.55 0.40 0.55 0.40 0.55 0.40 0.55 0.40 0.55 0.40 0.55 0.40 0.55 0.40 0.55 0.40 0.55 0.40 0.55 0.40 0.75 0.40 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.40 0.63 0.25	15-Vili 227 -17.82 3859 7.2 14.55 -0.1 646.2 65.24 65.24 9.35 0.81 29.58 19.43 24.47 0.65 0.61 0.47 0.65 0.24 0.65 0.23 14.96 5.35 0.16 5.93 8.252	13-14 2588 -17.82 3859 3859 3859 3859 645.2 645.2 65.24 65.24 65.24 65.24 65.24 65.24 65.24 65.24 65.24 65.24 65.24 65.24 65.24 0.21.50 21.50 21.50 21.50 21.50 21.50 21.50 21.50 21.50 28.37 0.51 0.68 0.23 0.61 0.53 16.55 4.98 0.15 9.355	13-A 288 288 288 -17.82 3859 9.44 15.6 3.1 645.6 65.24 3.5 8 2.711 12.47 8.71 0.703 8.261 22.92 31.65 0.65 0.44 1.77 0.766 0.711 0.233 17.65 4.63 0.235 8.800	13:19 319 319 -17.82 3859 8.8 15.8 15.8 15.8 15.8 15.8 15.8 65.24 65.24 3.5 8 2.71 12.94 8.43 0.65 40.73 23.46 33.69 0.59 1.80 0.75 1.80 0.56 0.68 0.231 18.06 4.32 0.075 9.35 10.30	13:40 349 -17.82 3859 10.3 16.0 4.6 645.2 65.24 3.59 7.19 7.19 0.55 21.77 34.45 0.50 0.50 0.51 1.82 0.86 0.65 0.23 16.77 3.59 0.10.70

EVAPORACIÓN Y EVAPOTRANSPIRACIÓN EN HIDROLOGÍA – MEDICIÓN, ESTIMACIÓN Y APLICACIONES

FAO Penman-Monteith	Ene	Feb	Mar	Abr	May	Jun	Jul	Δαο	Sen	Oct	Nov	Dic
Temperatura media °C	10.7	10.0	99	97	85	74	59	72	83	94	8.8	10.3
Calor vaporización "Cy" (M l/kg)	2 48	2 48	2 48	2 48	2 48	2.48	2 4 9	2.48	2 48	2 4 8	2 48	2 48
Gradiente presión vapor satur "Gsv" (kPa/°C)	0.09	0.08	0.08	0.08	0.08	0.07	0.06	0.07	0.07	0.08	0.08	0.08
Presión kPa	645.60	645.80	646.20	646 60	646 70	646 50	646 40	646.20	645.20	645.60	645 20	645.20
Cons psicrométrica "Cps" kPa/°C	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42
Cons psicrom modificada "Cps*" kPa/°C	0.82	0.78	0.77	0.75	0.72	0.73	0.74	0.76	0.78	0.82	0.81	0.82
Gsv/(Gsv:Cps*)	0.10	0.10	0.10	0.10	0.10	0.09	0.08	0.08	0.09	0.09	0.09	0.09
Cps/(Gsv:Cps*)	0.10	0.10	0.50	0.51	0.54	0.53	0.53	0.51	0.50	0.00	0.00	0.00
Badiación solar "Bs" M.I/m2·día	19.67	20.51	19.49	19.51	18.33	16.90	17.63	19.43	21.50	22.92	23.46	21 77
Rad. día despejado sin pubes "Rso" M I/m2·dí	34.38	33.13	30.58	26.59	22.90	20.86	21.50	24 47	28.37	31.65	33.69	34 45
Rad, neta entrante "Rns" (solar) M.I/m2:día	15 15	15 79	15.00	15.02	14 12	13.01	13.57	14.96	16.55	17.65	18.06	16 77
Rad, neta saliente (onda larga) M I/m2:día	2.87	3 33	3.48	4 54	5.43	5.61	5.67	5.35	4 98	4.63	4 32	3 59
Radiación neta "Rn"	12 27	12.46	11.52	10.48	8.68	7 40	7 90	9.61	11.58	13.02	13 75	13.18
Eluio de calor en el suelo M.I/m2:día "G"	-0.02	-0.06	-0.03	-0.09	-0.16	-0.18	-0.01	0.16	0.15	0.04	0.07	0.13
"Bn-G"	12 29	12.52	11.55	10.58	8.84	7.58	7.91	9.45	11 43	12.98	13.68	13.05
Eunción del viento "f(u)"	8.59	7 88	7.63	7 15	6 43	6.71	6.99	7 46	7.93	8.63	8 65	8.61
Déficit de saturación de vapor "eº-e" (kPa)	0.55	0.52	0.50	0.59	0.67	0.68	0.63	0.65	0.68	0.00	0.68	0.65
(Gsv/(Gsv+Cps*)):(1/Cv):(Rn-G)	0.47	0.48	0.45	0.41	0.34	0.27	0.26	0.32	0.40	0.46	0.47	0.49
(Cps/(Gsv+Cps*)):f(u):(e ^o -e)	2 21	2 00	1.89	2 17	2.32	2 42	2.34	2.50	2 67	2.91	2.82	2 65
ETr (Penman-Monteith) mm/día	2.68	2.00	2.33	2.58	2.66	2.69	2 59	2.82	3.07	3.37	3 29	3 14
ETr (Banman Mantaith) mm/maa	02.02	60 200	72 204	77 450	02 454	00 007	00 422	07 264	02 121	104 51	00 700	07 464
ETT (Ferman-wontenn) mm/mes	03.03 Emo	09.399	12.294 Mar	11.459	02.454 Mov	00.007	00.422	07.334	92.121	104.51	90.709	97.401 Die
BLANET-CRIDDLE (mm/mes)	Ene 10.7	Feb 10.0	iviar 0.0	AD	iway 0 5	Jun	Jui	Ago	Sep		NOV	
Dereenteie Nº de barres de Cel referere	10.7		9.9	9.7	0.5	1.4	5.9	1.2	0.3	9.4	0.8	10.3
Forceritaje in- de noras de Sol maxima	9.0	0./	0.4	0.1	1.8	1.6	1.1	1.9	0.2	0.6	109 5	9.1
Velocidad del viento o 2 m (m/a)	0.74	0.40		101.3	93.6	01.9	03.3	90.5	98.3		108.5	110.8
velocidad del viento a 2 m (m/s)	2.71	2.48	2.40	2.25	2.01	2.09	2.17	2.32	2.48	2.71	2.71	2./1
Humodod rolotivo minimo 9/	0.446	0.524	0.554	0.713	0.825	0.840	0.856	0.814	0.753	0.698	0.652	0.546
numedad relativa minima %	45	45	46	40	32	29	29	32	32	33	34	38
Factor a _b	1.86	1.85	1.88	1.62	1.29	1.16	1.16	1.26	1.29	1.33	1.36	1.56
Factor b _b	1.10	1.15	1.17	1.35	1.50	1.55	1.57	1.52	1.46	1.42	1.37	1.24
FTP (mm/mes)	130.96	120 00	126.08	137.88	142 12	137 64	132 11	138.6	145 15	152 75	150.05	146 18
CENICAEE (mm/mos)	130.90 Eno	129.99 Fob	120.00 Mar	137.00 Abr	142.12 Mov	137.04	132.11	130.0	143.13 Son	132.73	Nov	140.10 Dio
	3950	3950	2850	2950	1Widy 3950	3950	3950	3950	3ep 3950	3950	3950	3950
Cooficiente a	4 658	1 658	4 658	4 659	4 658	1 658	4 658	4 658	1 658	4 658	4 658	4 658
Coeficiente b	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	400.07	20	400.07	100.00	400.07	100.00	400.07	400.07	100.00	400.07	100.00	400.07
ETP (mm/mes)	133.67	120.74	133.67	129.36	133.67	129.36	133.67	133.67	129.36	133.67	129.36	133.67
METODO CUBETA (mm/mes)	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	DIC
Temperatura media °C	10.7	10.0	9.9	9.7	8.5	1.4	5.9	7.2	8.3	9.4	8.8	10.3
Fetch (val comprendido 1 a 1000 m)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Humedad relativa %	60	60	61	53	43	39	39	42	43	44	45	51
Velocidad del viento a 2 m (m/s)	2.71	2.48	2.40	2.25	2.01	2.09	2.17	2.32	2.48	2.71	2.71	2.71
Coeficiente Kt	0.69	0.69	0.70	0.68	0.65	0.63	0.63	0.64	0.65	0.65	0.65	0.67
Evaporacion de Tanque tipo A (mm/m	162.3	145.6	154.1	147.8	141.9	128.9	138.9	164.8	178.1	209.6	208.3	193.5
ETP (mm/mes)	112.67	101.09	107.36	100.00	91.77	81.55	87.87	106.00	115.15	136.19	136.02	129.82
METODO CLASE A-FAO (mm/mes)	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
Temperatura media °C	10.7	10.0	9.9	9.7	8.5	7.4	5.9	7.2	8.3	9.4	8.8	10.3
Dist.Cub (val comprendido 1 a 1000 m	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Humedad relativa %	60	60	61	53	43	39	39	42	43	44	45	51
Velocidad del viento a 2 m (m/s)	2.71	2.48	2.40	2.25	2.01	2.09	2.17	2.32	2.48	2.71	2.71	2.71
Coeficiente Kp (Sánchez-Toribio)	0.78	0.78	0.78	0.74	0.69	0.67	0.67	0.69	0.69	0.70	0.70	0.73
Evaporacion de Tanque tipo A (mm/m	162.3	145.6	154.1	147.8	141.9	128.9	138.9	164.8	178.1	209.6	208.3	193.5
FTP (mm/mes)	126 13	113 16	120 53	100 73	98 256	86 66	03 38	113 27	123.3	146 15	146 29	141 7
GARCIA Y LOPEZ (mm/mes)	Ene	Feh	Mar	Abr	May	Jun	Jul	Ago	Sen	Oct	Nov	Dic
Temperatura media °C	10.7	10.0	99	97	85	74	59	72	83	94	8.8	10.3
Humedad relativa %	60.7	60.0	61	53	43	30	30	42	43	4/	45	51
Coeficiente n	0.325	0 305	0 300	0.294	0.260	0 228	0 184	0 222	0 253	0 285	0 269	0 313
Coeficiente E	10	9.000 9	9.000	9.201	8	8	7	8	8	9.200	8	9.010
Días del mes	31	28	31	30	31	30	31	31	30	31	30	31
	447.00	07.440	400.40	447.55	400.00	447.00	00.000	444.00	404.00	444.0	405.00	407.00
ETP (mm/mes)	117.03	97.113	102.12	117.55	129.82	117.66	98.082	111.22	121.68	141.3	125.38	137.29
METODO CLIMDATA (mm/mes)	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	DIC
Temperatura media °C	10.7	10.0	9.9	9.7	8.5	/.4	5.9	7.2	8.3	9.4	8.8	10.3
Humedad relativa %	60	60	61	53	43	39	39	42	43	44	45	51
	0.31	0.31	0.31	0.31	0.31	0.31	0.31	0.31	0.31	0.31	0.31	0.31
Coeficiente 2	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67
ETP (mm/mes)	68.846	64.154	61.234	73.261	82.778	83.354	76.38	77.293	81.324	86.338	81.232	81.024
JENSEN-HAISE (mm/mes)	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
Temperatura media °C	10.7	10.0	9.9	9.7	8.5	7.4	5.9	7.2	8.3	9.4	8.8	10.3
Tensión vapor sat. T (máx kPa)	1.84	1.71	1.67	1.67	1.60	1.56	1.52	1.65	1.71	1.77	1.80	1.82
Tensión vapor sat. t (mín kPa)	0.88	0.88	0.87	0.85	0.76	0.67	0.55	0.61	0.68	0.76	0.70	0.85
СН	10.45	12.06	12.49	12.13	11.89	11.22	10.38	9.57	9.76	9.91	9.09	10.31
C1	12.70	12.70	12.70	12.70	12.70	12.70	12.70	12.70	12.70	12.70	12.70	12.70
СТ	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Тх	-10.9	-10.7	-10.6	-10.7	-10.7	-10.8	-10.9	-11.0	-11.0	-10.9	-11.1	-10.9
Ra	16.96	20.51	19.49	19.51	18.33	16.90	17.63	19.43	21.50	22.92	23.46	21.77
Días del mes	31	28	31	30	31	30	31	31	30	31	30	31
ETP (mm/mes)	127.36	118.01	119.1	117.46	109.62	97.335	103.76	132.65	147.51	169.48	176.67	162.51

EVAPORACIÓN Y EVAPOTRANSPIRACIÓN EN HIDROLOGÍA MEDICIÓN, ESTIMACIÓN Y APLICACIONES

LINACRE (mm/mes)	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
Temperatura media °C	10.7	10.0	9.9	9.7	8.5	7.4	5.9	7.2	8.3	9.4	8.8	10.3
Temperatura media de máximas °C	16.2	15.0	14.7	14.7	14.0	13.6	13.2	14.5	15.0	15.6	15.8	16.0
Temperatura media de mínimas °C	5.2	5.1	5.0	4.6	3.0	1.2	-1.3	-0.1	1.5	3.1	1.8	4.6
Elevacion msnm	3859	3859	3859	3859	3859	3859	3859	3859	3859	3859	3859	3859
Temp.Equivalente a nivel del mar	33.85	33.19	33.00	32.80	31.65	30.55	29.09	30.35	31.40	32.50	31.95	33.45
Rango de temperaturas (diario medio)	11.00	9.93	9.70	10.10	11.00	12.40	14.53	14.61	13.50	12.50	14.00	11.40
Diferencia de temp. Medias calido-frio	-0.67	-0.18	-0.20	-1.15	-1.10	-1.47	1.26	1.05	1.10	-0.55	1.50	0.40
T-Td	7.53	6.89	6.69	6.50	6.57	6.77	8.32	8.75	8.57	7.87	9.18	7.97
Etp (1)	256.6	244.2	240.4	236.7	232.8	231.2	248.2	260.0	261.8	256.0	273.3	261.5
Días del mes	31	28	31	30	31	30	31	31	30	31	30	31
ETP (mm/mes)	114.8	97.71	106.25	100.92	100.94	95.557	103.87	110.73	109.46	112.31	115.14	116.31

El resumen de resultados se muestra a continuación:

METODO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SET	ОСТ	NOV	DIC
METODO THORNTHWAITE (ETP)	63.73	52.47	54.98	49.98	44.11	36.63	30.85	38.27	43.98	53.38	50.56	61.91
METODO TURC (ETP)	83.85	79.04	81.23	82.66	80.69	72.19	64.46	77.11	90.58	101.74	97.96	92.10
METODO HARGREAVES (ETR)	132.57	115.84	119.64	117.42	114.02	103.46	113.71	132.36	141.97	156.89	161.08	147.30
METODO PENMAN-MONTEITH (ETR)	83.03	69.40	72.29	77.46	82.45	80.81	80.42	87.35	92.12	104.51	98.79	97.46
METODO BLANNEY-CRIDDLE-FAO	130.96	129.99	126.08	137.88	142.12	137.64	132.11	138.60	145.15	152.75	150.05	146.18
METODO ECUACION DE CENICAFÉ	133.67	120.74	133.67	129.36	133.67	129.36	133.67	133.67	129.36	133.67	129.36	133.67
METODO CUBETA	112.67	101.09	107.36	100.00	91.77	81.55	87.87	106.00	115.15	136.19	136.02	129.82
METODO CLASE A-FAO	126.13	113.16	120.53	109.73	98.26	86.66	93.38	113.27	123.30	146.15	146.29	141.70
METODO ECUACION GARCIA LOPEZ	117.03	97.11	102.12	117.55	129.82	117.66	98.08	111.22	121.68	141.30	125.38	137.29
METODO CLIMDATA - 1981	68.85	64.15	61.23	73.26	82.78	83.35	76.38	77.29	81.32	86.34	81.23	81.02
METODO JENSEN-HAISE- 1963	127.36	118.01	119.10	117.46	109.62	97.34	103.76	132.65	147.51	169.48	176.67	162.51
METODO LINACRE -1977	114.80	97.71	106.25	100.92	100.94	95.56	103.87	110.73	109.46	112.31	115.14	116.31
EVAPORACION TANQUE	162.30	145.60	154.10	147.80	141.90	128.90	138.90	164.80	178.10	209.60	208.30	193.50
PRECIPITACION	156.94	134.87	136.41	51.57	11.51	4.53	2.09	10.33	24.15	42.43	52.84	88.10
Valor Máximo	162.30	145.60	154.10	147.80	142.12	137.64	138.90	164.80	178.10	209.60	208.30	193.50
Valor Mínimo	63.73	52.47	54.98	49.98	44.11	36.63	30.85	38.27	43.98	53.38	50.56	61.91
Valor Medio	112.07	100.33	104.51	104.73	104.01	96.24	96.73	109.49	116.90	131.10	128.99	126.21
Desviación Estandar	28.98	27.52	29.43	27.88	28.59	27.74	30.19	33.20	34.49	39.89	41.73	35.81

3.5.2.6. Modelos Usando Imágenes. Sebal y Metric son algoritmos de teledetección que calculan patrones espacio-temporales de evapotranspiración utilizando balance de energía superficial. Estos procedimientos indexan el flujo de calor sensible desde la superficie terrestre hasta las temperaturas superficiales medidas por satélite en condiciones de límite de superficie específicas. La indexación del flujo de calor a la temperatura de la superficie basada en satélites y la calibración utilizando los datos del clima terrestre disponibles reduce en gran medida los impactos de los sesgos en los componentes de balance de energía calculados y reduce la necesidad de corrección atmosférica. Los mapas de evapotranspiración creados por Metric y Sebal han sido probados contra las mediciones de covarianza del lisímetro y muestran buena consistencia para los campos de riego, pastizales y zonas ribereñas áridas en el suroeste de los Estados Unidos (Hong et al., 2008). La principal diferencia entre Sebal y Metric es que Sebal se puede aplicar sin usar ninguna medición en el suelo, mientras que Metric necesita al menos una estación meteorológica de alta calidad en el suelo para calcular la *ET* de referencia. Por lo tanto, el algoritmo Sebal sería el método de elección para regiones del mundo que no tienen datos del clima terrestre o donde los datos del clima de alta calidad no están disponibles. El último algoritmo se aplica cuando las mediciones meteorológicas terrestres de alta calidad están disponibles por hora.

• Modelo Sebal

El modelo Sebal (Surface Energy Balance Algorithm for Land) es un algoritmo semiempírico que promueve la parametrización del flujo de balance de energía y flujos de superficie basados en algunos datos locales y mediciones espectrales de satélites (Santos et al., 2010).

El algoritmo Sebal fue desarrollado en 1995 por Bastiaanssen y validado en varios ecosistemas mundiales como Egipto, España, Portugal, Francia, Italia, Argentina, China, India, Estados Unidos, entre otros. Es necesario que las bandas visibles, infrarrojo próximo e infrarrojo termal sean tomados como datos de entrada para el proceso (Bastiaanssen et al., 1998).

A pesar que el algoritmo Sebal se fundamenta en formulaciones semiempíricas, los resultados de validación del mismo, realizados en experimentos de campo vienen mostrando que el error relativo en fracción evaporativa fue de 20 %, 10 % y 1 % para escalas de 1, 5 y 100 km, respectivamente. El autor espera que el modelo Sebal presente mejores resultados en escalas regionales como también en superficies heterogéneas (Bastiaanssen, 2000). El modelo Sebal calcula la evapotranspiración a partir de imágenes satelitales y datos de estaciones climáticas usando el balance de energía superficial como se ilustra en la Figura 3.11.

Figura 3.11. Balance de energía superficial (Bastiaanssen, 2000)

La imagen satelital proporciona información solo para el instante de tiempo del sobrevuelo. Sebal calcula un flujo de evapotranspiración instantánea para el tiempo de la imagen. El flujo de evapotranspiración es calculado para cada pixel de la imagen como un residuo de la ecuación del balance de energía superficial.

La ecuación es el balance de energía superficial donde: λET es el flujo de calor latente (W/m²), R_n es el flujo de radiación neta en la superficie (W/m²), G es el flujo de calor hacia el suelo (W/m²) y H es el flujo de calor sensible hacia el aire (W/m²). Veamos cada uno de ellos:

- Flujo de radiación neta (R_n)

La radiación neta es la diferencia entre la radiación entrante y saliente de longitudes de onda corta y larga. Es el equilibrio entre la energía absorbida, reflejada y emitida por la superficie terrestre o la diferencia de la radiación neta de onda corta entrante (R_{sl}) y la radiación neta de onda larga saliente (R_{lt}). R_n es normalmente positiva durante el día y negativa durante la noche. El valor diario total para R_n es casi siempre positivo para 24 horas, excepto en condiciones extremas de latitudes elevadas (Allen, 2006). La R_n en la superficie representa la energía de radiación disponible en la superficie. Esta es calculada mediante la diferencia entre los flujos de radiación saliente y los flujos de radiación entrante; según la

siguiente ecuación (el balance de radiación en la superficie se aprecia en la Figura 3.12.):

 $R_n = (1 - \alpha)R_{S\downarrow} + R_{L\downarrow} - R_{L\uparrow} - (1 - \epsilon_o)R_{L\downarrow}$

- Flujo de calor latente (λET)

El calor latente es la cantidad de energía que necesita un cuerpo para cambiar de fase; por ejemplo, para convertir un gramo de agua de estado líquido a gaseoso es necesario una energía de 2.27 J. A este valor se le conoce como calor latente de vaporización del agua y, al igual que el calor específico, depende del material.

En la superficie terrestre el flujo de calor latente es debido a la evaporación de cuerpos de agua (lagos, lagunas, ríos), de suelos húmedos, por la transpiración de la planta o por la condensación. A la combinación de la evaporación y la transpiración de las plantas se le conoce como evapotranspiración. Este proceso se debe a que el aire por encima de la superficie está más seco que la sección próxima a la superficie, generando, de esta manera, una gradiente de vapor de agua que hace que el flujo de calor latente vaya de la zona más húmeda (superficie terrestre) a las más secas (aire sobre la superficie terrestre). Estas condiciones se dan en las horas diurnas debido a la gran cantidad de energía que produce un aumento de la gradiente entre el suelo y el aire. En las noches, en cambio, el proceso de condensación es el dominante (formación de neblinas).
- Flujo de calor sensible (H)

El calor sensible es la cantidad de energía necesaria para cambiar la temperatura de un cuerpo; por ejemplo, para elevar la temperatura de un gramo de agua en un grado centígrado es necesaria una energía de 4.187 J. A este último valor se le conoce como calor específico y depende de cada material. En los ecosistemas existe un flujo de la superficie hacia la atmósfera y viceversa. Este flujo es producido por las diferencias de temperatura que existe entre la atmósfera y la superficie terrestre, lo que crea una gradiente de temperatura. Por lo general, en el día existe una salida de flujo de calor sensible hacia la atmósfera; esto se debe a que durante el día la radiación es más fuerte y la superficie terrestre se calienta más rápido que el aire creando una gradiente positiva de temperatura entre la superficie y la atmósfera, lo que genera una salida de H. Por las noches el proceso es contrario, ya que la tierra se enfría de forma más rápida creando una gradiente negativa en comparación a la del día; por lo tanto, hay una entrada de *H* hacia la superficie terrestre.

- Flujo de calor hacia el suelo (G)

El flujo de calor hacia el suelo está dominado por la energía recibida en la superficie terrestre, la capacidad y conductividad térmica del suelo. Por lo general, el suelo guarda calor en el día, de esta manera hay un almacenamiento de energía y a la vez hay un flujo de calor hacia capas más profundas del suelo. En la noche el proceso se invierte; es decir, el suelo libera la energía almacenada hacia la atmosfera, y por una gradiente de calor existe un flujo de energía proveniente de las capas profundas del suelo.

Metodológicamente la estimación de la evapotranspiración mediante el modelo Sebal consiste en estimar los componentes del balance de energía como la R_n , G, $H y \lambda ET$ de forma distribuida para un área de estudio.

Figura 3.13. Diagrama de flujo para el cálculo de la radiación neta (Allen, 2006)

El albedo superficial es definido como la fracción de radiación reflejada de la radiación de onda corta entrante. Según la Figura 3.13., vemos que es necesario, previamente, calcular las etapas del 1 al 4.

- Etapa 1:

La radiancia espectral para cada banda es la energía de la radiación saliente de las bandas observadas en el tope de la atmósfera mediante un satélite, este es calculado mediante la ecuación adaptada para Landsat 5 y 7. Las unidades de L_{λ} son Wm⁻²sr⁻¹µm⁻¹.

$$L_{\lambda} = \left[\frac{L_{MAX} - L_{MIN}}{255}\right] DN + L_{MIN}$$

Donde: *DN* es el número digital de cada pixel (número entre 0 y 255), L_{MAX} y L_{MIN} son las constantes para calibración. En la Tabla 3.7. se presentan los valores de L_{MAX} y L_{MIN} para Landsat 5 y 7.

N°	2011	-06-22	N°	2011	-05-13
BANDA	LMIN	LMAX	BANDA	LMIN	LMAX
1	-1 520	193 000	1	-6.200	191.600
2	2.940	265.000	2	-6.400	196.500
2	-2.040	303.000	3	-5.000	152.900
3	-1.170	264.000	4	-5.100	241.100
4	-1.510	221.000	5	-1.000	31.060
5	-0.370	30.200	6.1	0.000	17.040
6	1.238	15.303	6.2	3.200	12.650
7	-0.150	16.500	7	-0.350	10.800

 Tabla 3.7.

 L_{MIN} y L_{MAX} valores para Landsat 5 TM y 7 ETM+ (Allen, 2006)

Para Landsat 7, en los archivos de metadatos, si se dispone de información de Gain y Bias, la siguiente ecuación simplifica el cálculo de L_1 .

 $L_{\lambda} = Gain * DN + Bias$

Donde Gain y Bias relacionan a los valores dados en el archivo metadato.

Para Landsat 8 es posible calcular la radiancia espectral, pero no es necesario porque la reflexividad puede ser calculada directamente.

- Etapa 2:

La reflectividad de una superficie está definida como el cociente del flujo de radiación reflejada y el flujo de radiación entrante; es calculada usando la siguiente ecuación dada para las imágenes Landsat 5 y 7.

$$\rho_{\lambda} = \frac{\pi L_{\lambda}}{ESUN_{\lambda}cos\theta \ d_{\gamma}}$$

Donde L_{λ} es la radiancia espectral de cada banda, $ESUN_{\lambda}$ es la irradiación media para cada banda (W m⁻²µm⁻¹), cos θ es el coseno del ángulo de incidencia solar, y d_r es la inversa de la distancia tierra - sol al cuadrado. Valores para $ESUN_{\lambda}$ son dados en la Tabla 3.8. Cos θ es calculado usando los archivos metadato sobre el ángulo de elevación solar (β), donde θ = (90°- β). El término d_r es definido como 1/d_{t-s}², donde d_{t-s} es la distancia relativa entre la tierra y el sol en unidades astronómicas (AU) es igual a 1.496*10⁸ km. d_r es calculado

mediante la ecuación descrita en la guía de FAO 56 Evapotranspiración del cultivo.

SATÉLITE	BANDA 1	BANDA 2	BANDA 3	BANDA 4	BANDA 5	BANDA 6	BANDA 7
LANDSAT 5	1957	1829	1557	1047	219.3		74.52
LANDSAT 7	1969	1840	1551	1044	225.7	-	82.07
LANDSAT 8	1982	1827	1540	942	234		79

Tabla 3.8. Valores de ESUN_λ para Landsat 5 y Landsat 7 (Wm²/μm) (Allen, 2006)

- Etapa 3:

El albedo en el tope de la atmosfera. Este es el albedo no ajustado para la transmisividad atmosférica, el cálculo se efectúa a través de la combinación lineal de la reflexividades (ρ_{λ}) y los coeficientes de ponderación.

$$\alpha_{to\alpha} = \sum (\omega_\lambda \rho_\lambda)$$

Donde ρ_{λ} es la reflexividad calculada (etapa 2) y ω_{λ} es un coeficiente de ponderación de cada banda.

SATÉLITE	BANDA 1	BANDA 2	BANDA 3	BANDA 4	BANDA 5	BANDA 6	BANDA 7
LANDSAT 5	0.293	0.274	0.233	0.157	0.033	-	0.011
LANDSAT 7	0.293	0.274	0.231	0.156	0.034	-	0.012
LANDSAT 8	0.3	0.276	0.233	0.143	0.035	-	0.012

- Etapa 4:

El albedo de superficie es calculado mediante la corrección del α_{toa} para la transmisividad atmosférica.

$$\alpha = \frac{\alpha_{toa} - \alpha_p}{\tau_{sw}^2}$$

Donde α_p es la radiación solar reflejada por la atmósfera y τ_{sw} es la transmisividad atmosférica. Los valores para α_p se encuentran en el rango 0.025 y 0.04, el valor recomendado por Bastiaanssen et al. (2000) para Sebal es de 0.03.

La transmisividad atmosférica es definida como una fracción de la radiación entrante que es transmitida por la atmosfera y esto representa los efectos de absorción y reflexión ocurridos dentro de la atmosfera. Estos efectos ocurren para la radiación entrante y para la radiación saliente, por lo tanto se eleva al cuadrado en la ecuación anterior; τ_{sw} incluye transmisividades de la radiación directa de los rayos solares y la radiación difusa en la superficie; esta se calcula asumiendo un cielo claro y condiciones relativamente secas, usando una relación basada en la elevación descrita en la guía de la FAO 56.

 $\tau_{sw} = 0.75 + 2 * 10^{-5}z$

Donde z es la elevación sobre el nivel del mar (m). Esta elevación debe representar mejor el área de interés, como la elevación de la estación climática relevante. Los valores típicos del albedo superficial para algunos tipos de superficie son:

Nieve fresca	0.80 - 0.85
Nieve vieja y congelada	0.30 - 0.70
Suelos oscuro	0.08 - 0.14
Arcilla	0.16 - 0.23
Arena blanco - amarillo	0.34 - 0.40
Arena gris - blanco	0.18 - 0.23
Gras o pasto	0.15 - 0.25
Campos de maiz	0.14 - 0.22
Campos de arroz	0.17 - 0.22
Bosque de coniferas	0.10 - 0.15
Bosques antiguos	0.15 - 0.20
Agua	0.025 - 0.348

 Tabla 3.10.

 Valores típicos de albedo (Bastiaanssen et al., 2000)

La radiación de onda larga saliente es el flujo de radiación termal emitida a partir de la superficie terrestre hacia la atmosfera (Wm⁻²). El cálculo se efectúa en las etapas del 5 al 8.

- Etapa 5:

Cálculo de los índices de vegetación: NDVI, SAVI, IAF. El índice de vegetación de diferencia normalizada (NDVI) es obtenido a través de la razón entre la diferencia de las reflectividades del infrarrojo próximo (ρ_4) y el rojo (ρ_3) por la suma de las mismas:

$$NDVI = \frac{\rho_4 - \rho_3}{\rho_4 + \rho_3}$$

El *NDVI* es un indicador sensible de la cantidad y la condición de la vegetación verde. Sus valores varían de -1 a +1, y para superficies con alguna vegetación el *NDVI* varía de 0 a 1; para el agua y nubes, el *NDVI*, generalmente, es menor que cero.

El índice de vegetación ajustado para los efectos del suelo (SAVI) es un índice que busca "restar" los efectos de fondo del suelo del *NDVI* por lo que los impactos de la humedad del suelo se reducen en este índice.

$$SAVI = (1 + L) \frac{\rho_4 - \rho_3}{L + \rho_4 + \rho_3}$$

Dónde *L* es constante para *SAVI*.

El índice de área foliar (LAI) está definido como el cociente entre el área foliar de toda la vegetación por unidad de área utilizada por la vegetación. El *LAI* es un indicador de la biomasa de cada pixel de la imagen.

$$LAI = -\frac{ln(\frac{0.69 - SAVI}{0.59})}{0.91}$$

- Etapa 6:

Las emisividades de un cuerpo son definidas como la razón entre la energía térmica radiada por la superficie y la energía térmica radiada por un cuerpo negro a la misma temperatura. Dos emisividades superficiales son usados en Sebal, la primera es una emisividad representando comportamientos de superficies para la emisión termal en la banda 6, relativamente estrecha del Landsat (10.4 a 12.5 µm), expresada como $\varepsilon_{_{NB}}$. La segunda es una emisividad representando comportamientos de superficie para la emisión termal en el ancho del espectro termal (6 a14 μ m) expresado como $\varepsilon_o y \varepsilon_{\scriptscriptstyle NB}$, es usada en cálculos de la temperatura de superficie $T_s y \varepsilon_o y$ usada, posteriormente, en el cálculo total de la radiación de onda larga emitida desde la superficie.

 $\varepsilon_{NB} = 0.97 + 0.0033 * LAI, para LAI < 3$ $\varepsilon_{o} = 0.95 + 0.01 * LAI, para LAI < 3$

Además $\varepsilon_{NB} = 0.98 \ y \ \varepsilon_o = 0.98$ cuando *LAI* > = 3.

- Etapa 7:

La temperatura superficial es calculada usando la siguiente ecuación modificada de Plank.

$$T_{s} = \frac{k_{2}}{ln\left(\frac{\varepsilon_{NB} * k_{1}}{L_{\lambda,i}} + 1\right)}$$

Donde $L_{\lambda,i}$ es la radiancia espectral de la banda termal 6 para Landsat 5 y 7; K_1 y K_2 son constantes para las imágenes Landsat **(Tabla 3.11.)**.

 $L_{\lambda,6} = 0.056322ND + 0.1238$

SATÉLITE K1 K2 LANDSAT5 TM Band6 607.76 1260.56 LANDSAT7 ETM+ Band6 666.09 1282.71 LANDSAT 8 TIRS Band10 774.89 1321.08 LANDSAT 8 TIRS Band11 480.89 1201.14

Tabla 3.11.Constantes K1 y K2 para Landsat 5, 7 y 8. (Allen, 2006)

- Etapa 8:

La radiación de onda larga saliente se obtiene mediante la ecuación de Stefan-Boltzman:

$$R_{L\uparrow} = \varepsilon_o * \sigma * T_s^4$$

Donde ε_o es la emisividad de cada pixel, σ es una constante de Stefan-Boltzman (σ = 5.67*10⁻⁸ Wm⁻² K⁻⁴) y T_s es la temperatura de la superficie en kelvin.

- Etapa 9:

La radiación de onda corta entrante es el flujo de radiación solar directa y difusa que actualmente alcanza la superficie de la tierra (Wm⁻²). Es calculada asumiendo condiciones de cielo claro como constante para el tiempo de la imagen a usar.

 $R_{s\downarrow} = G_{sc} * \cos\theta * d_r * \tau_{sw}$

Donde G_{sc} es la constante solar (1367 Wm⁻²), $cos\theta$ es el coseno del ángulo de incidencia solar, d_r es el inverso al cuadrado de la distancia relativa Tierra-Sol y τ_{sw} es la transmisividad atmosférica. R_{st} se considera constante en toda el área de estudio cuando la transmisividad es calculada para una altitud promedio.

- Etapa 10:

La radiación de onda larga entrante es el descenso de la radiación termal de la atmósfera hacia la superficie (Wm⁻²). Es calculada usando la ecuación de Stefan - Boltzmann.

 $R_{L\downarrow} = \varepsilon_a * \sigma * T_a^4$

Donde \mathcal{E}_a es la emisividad atmosférica (adimensional), σ es una constante de Stefan-Boltzman (σ = 5.67*10⁻⁸ Wm⁻² K⁻⁴) y T_a es la temperatura del aire superficial en kelvin.

$$\varepsilon_a = 0.85(-ln \tau_{sw})^{0.09}$$

Donde τ_{sw} es la transmisividad atmosférica. Asimismo, tenemos una ecuación en función de T_{a} .

$$R_{L\downarrow} = 0.85 * (-\ln \tau_{sw})^{0.09} * \sigma * T_a^4$$

- Etapa 11:

Finalmente, la radiación neta en la superficie es calculada utilizando la ecuación de balance de radiación en la superficie:

$$R_n = (1 - \alpha)R_{S\downarrow} + R_{L\downarrow} - R_{L\uparrow} - (1 - \epsilon_o)R_{L\downarrow}$$

- Flujo de calor de suelo (G)

El flujo de calor hacia el suelo es la porción de almacenamiento de calor en el suelo y vegetación debido a la conducción. Sebal primero calcula la proporción G/R_n usando la siguiente

116

ecuación empírica desarrollada por Bastiaanssen et al. (2000).

$$\frac{G}{R_n} = T_s \alpha^{-1} (0.0038\alpha - 0.007\alpha^2) (1 - 0.98NDVI^4)$$

Donde T_s es la temperatura superficial (°C), α es el albedo superficial y *NDVI* es el índice de vegetación de diferencia normalizada.

En las aplicaciones de Sebal, valores de G/R_n para agua y nieve se usan las siguientes asunciones. En la Tabla 3.12. se presentan estimaciones de varios tipos de superficie.

TIPO DE SUPERFICIE	G/Rn
Agua clara y profunda	0.5
Nieve	0.5
Desierto	0.2 - 0.4
Agricultura	0.05 - 0.15
Suelo desnudo	0.2 - 0.4
Cobertura total de alfalfa	0.04
Roca	0.2 - 0.6

 Tabla 3.12.

 Estimación de G/R, para varias superficies (Bastiaanssen et al. 2000)

Si *NDVI* < 0; asumir que la superficie es agua; $G/R_n = 0.5$. SI $T_s < 4 \,^{\circ}$ C y $\alpha > 0.45$; asumir que la superficie es nieve; $G/R_n = 0.5$.

- Flujo de calor sensible (H)

El flujo de calor sensible es la proporción del calor perdido hacia el aire mediante la convección y conducción; debido a la diferencia de temperatura es calculado usando la ecuación para transporte de calor:

$$H = \frac{(\rho * C_p * dT)}{r_{ah}}$$

Donde ρ es la densidad del aire (kg m⁻³), C_{ρ} es la capacidad del calor específico del aire (1004 J.Kg⁻¹.K⁻¹), dT(K) es la diferencia de temperatura ($T_1 - T_2$) entre dos alturas ($Z_1 ext{ y } Z_2$) y r_{ah} es la resistencia aerodinámica para el transporte de calor en s.m⁻¹ (**Figura 3.14.**).

Figura 3.14. Diagrama de flujo del proceso de iteración para el cálculo de H (Bastiaanssen et al., 2000)

La resistencia aerodinámica para el transporte de calor r_{ah} es calculado para una estabilidad neutral como:

$$r_{ah} = \frac{ln\frac{z_2}{z_1}}{u_*k}$$

Donde Z_1 y Z_2 son alturas en metros sobre el plano cero de desplazamiento (*d*) de la vegetación, *u*. es la velocidad de fricción (m.s⁻¹) que cuantifica las fluctuaciones de velocidad turbulenta en el aire, y *k* es la constante de Von Karman's igual

118

a 0.41. La velocidad de fricción *u*. es calculada usando la ley del viento logarítmica para condiciones atmosféricas neutrales.

$$u_* = \frac{u_x k}{ln \frac{z_x}{z_{om}}}$$

Donde *K* es la constante de Von Karman's, u_x es la velocidad de viento (ms-¹) a una altura; Z_x y Z_{om} son los coeficientes de rugosidad (m), Z_{om} es una medida de resistencia de la forma y fricción de la superficie vegetal con la capa de aire que interactúa sobre dicha superficie **(Figura 3.15.)**.

Figura 3.15.

A continuación, se describen los pasos seguidos para el cálculo del flujo de calor sensible según el diagrama de flujo de la Figura 3.14.

1.° La velocidad de fricción (u_*) en la estación climática es calculada para una condición atmosférica neutra. Su cálculo requiere la medición de la velocidad de viento (u_x) a una altura conocida (z_x) para el tiempo de la imagen satelital. La longitud de rugosidades que gobierna la transferencia del *momentum* (Z_{om}) es una estimación empírica a partir del cambio de altura de la vegetación alrededor de la estación climática.

$$z_{0m} = 0.12h$$

Donde *h* es la altura de la vegetación en la estación climática (m).

2.° La velocidad de viento (u_{200}) a una altura por encima de la estación climática, donde uno puede asumir que no hay ningún efecto de la rugosidad superficial. Esta altura es conocida como la "altura de mezcla", Sebal usa 200 metros.

$$u_{200} = u_* \frac{ln\left(\frac{200}{z_{om}}\right)}{k}$$

Donde u_* es la velocidad de fricción en la estación climática. 3.° La velocidad de fricción u_* a 200 metros es calculada para cada pixel, u_{200} puede ser asumido como constante en todos los pixeles de la imagen, ya que ocurre a una "altura de mezcla" en donde no es afectado por las características de la superficie.

$$u_* = \frac{k u_{200}}{ln\left(\frac{200}{z_{om}}\right)}$$

En esta etapa es necesario el cálculo del coeficiente de rugosidad (z_{om}) para cada uno de los pixeles, en función a *SAVI*, mediante la siguiente ecuación:

 $z_{om} = \exp(-5.809 + 5.62 \, SAVI)$

4.° La resistencia aerodinámica para el transporte de calor r_{ah} y u_{\cdot} son calculadas según las ecuaciones establecidas. Se requiere una serie de iteraciones para determinar el valor de r_{ah} para cada periodo que considere el impacto de inestabilidad (es decir flotabilidad) en r_{ah} y H. Asumiendo condiciones atmosféricas neutrales, un valor inicial r_{ah} debe ser calculado. z_1 es la altura por encima del plano cero de emplazamiento ($d \approx 0.67$ *altura de vegetación) de la superficie vegetal, z_2 está a cierta altura por encima del plano cero de desplazamiento, pero por debajo de la altura de la capa límite de superficie. Basado en análisis de experiencias de Bastiaanssen et al. (2002), valores de 0.1 m para z_1 y 2.0 m para z_2 son usualmente asignados.

5.° Para el cálculo del flujo de calor sensible (H), la diferencia de temperatura cerca de la superficie (dT) para cada pixel

necesita ser definida, esto se da como $dT=T_{z1}-T_{z2}$. La temperatura en cada pixel no es conocida, con valores explícitos para T_{z1} y T_{z2} ; sin embargo, solo la diferencia dT es usada. Sebal calcula dT para cada pixel mediante la asunción de una relación lineal entre dT y Ts.

$$dT = b + aT_s$$

Donde *b* y *a* son los coeficientes de correlación. Para definir estos coeficientes, Sebal usa dos pixeles anclas donde el valor para *H* se puede estimar de forma fiable.

En el pixel "frío" se define el flujo de calor sensible a partir de la ecuación respectiva como $H_{frio} = R_n - G\lambda ET_{frio}$. Experiencias en Idaho muestran que los campos agrícolas más "fríos" (húmedos) tienen una tasa de *ET* alrededor del 5 % mayor que el de referencia (*ET*_r); por lo tanto, *ET*_{frio} = 1.05 × *ET*r H_{frio} puede ser calculado como $H_{frio} = R_n - G - 1.05\lambda ET_r$, y dT_{frio} es calculado usando la siguiente ecuación.

$$dT_{frio} = \frac{H_{frio}r_{ah_frio}}{\rho_{frio}c_p}$$

El pixel "caliente" es calculado como $H_{cal} = R_n - G - 1.05\lambda ET_{cal}$, donde ET_{cal} se asume que es cero para un campo agrícola "caliente" (seco) sin vegetación verde y con una capa superficial del suelo seco. Los datos meteorológicos deben ser evaluados para ver si esta suposición es correcta. Si hubiera alguna precipitación 1-4 días antes de la fecha de la imagen, entonces ET_{cal} debe estimarse usando un modelo de balance de agua y hacerse el seguimiento de la humedad del suelo en el pixel "caliente". H_{cal} se calcula usando una hoja de cálculo Excel y dT_{cal} se calcula a partir de la ecuación anterior.

Los coeficientes de correlación b y a son calculados para obtener la relación lineal $dT=b+aT_s$ (Figura 3.16.). La diferencial de temperatura (dT) para cada pixel puede, ahora, ser calculada usando los coeficientes b, a y la temperatura superficial (Ts). La determinación de dT en los pixeles anclas y los coeficientes b y a se realizan en una hoja de cálculo.

6.° Una aproximación para la temperatura del aire (T_a) para cada pixel y una aproximación para la densidad del aire (ρ) se calcula con las siguientes ecuaciones.

$$T_{\alpha} = T_{s} - dT$$

$$\rho = 349.467 \frac{\left(\frac{T_{\alpha} - 0.0065 z}{T_{\alpha}}\right)^{5.26}}{T_{\alpha}}$$

7.° El flujo de calor sensible (H) para cada pixel es calculado en Sebal. Esta es la primera estimación de H asumiendo condiciones atmosféricas neutras.

8.° Para tener en cuenta los efectos generados de la flotabilidad por el calentamiento superficial, Sebal aplica la teoría de Monin-Obukhov en el proceso de iteración. Las condiciones atmosféricas de estabilidad tienen un gran efecto en la resistencia aerodinámica (r_{ah}) y deben ser consideradas en el cálculo de flujo de calor sensible (H), especialmente para condiciones secas. Sebal repite el cálculo de H a través de un número de iteraciones, cada uno corrigiendo los efectos de flotabilidad, hasta estabilizar el valor r_{ah} .

La longitud de Monin-Obukhov (L) es usada para definir las condiciones de estabilidad de la atmosfera en un proceso iterativo; está en función del calor y flujos de momento y es calculada mediante la siguiente ecuación:

$$L = -\frac{\rho c_p u_*^{3} T_s}{kgH}$$

Donde ρ es la densidad del aire (kg.m⁻²), c_p es el calor específico del aire (1004 J.kg-1.K⁻¹). u_* es la velocidad de fricción (m.s⁻¹), T_s es la temperatura de superficie (K), g es la constante gravitacional (9.81m.s⁻¹) y H es el flujo de calor sensible (W.m⁻²). Los valores de L definen las condiciones de estabilidad de la atmosfera. Si L < 0, la atmósfera es considerada no estable; si L > 0, la condición atmosférica es considerada estable; si L = 0, la condición atmosférica es considerada neutra.

Dependiendo de las condiciones atmosféricas, los valores de las correcciones para el transporte de *momentun* (ψ_m) y calor (ψ_n) deben ser considerados usando las siguientes formulaciones:

Si *L* < 0 (condición de inestabilidad):

$$\begin{split} \psi_{m(200m)} &= 2\ln\left(\frac{1+x_{200m}}{2}\right) + \ln\left(\frac{1+x_{200m}^2}{2}\right) - 2ArcTg(x_{200m}) + 0.5\pi\\ \psi_{h(2m)} &= 2\ln\left(\frac{1+x_{2m}^2}{2}\right)\\ \psi_{h(0.1m)} &= 2\ln\left(\frac{1+x_{0.1m}^2}{2}\right) \end{split}$$

Donde:

$$\psi_{(100m)} = \left(1 - 16 \ \frac{100}{L}\right)^{0.25}$$
$$\psi_{(2m)} = \left(1 - 16 \ \frac{2}{L}\right)^{0.25}$$
$$\psi_{(0.1m)} = \left(1 - 16 \ \frac{0.1}{L}\right)^{0.25}$$

Si L > 0 (condición de estabilidad):

$$\psi_{m(200m)} = -5\left(\frac{200}{L}\right)$$
$$\psi_{h(2m)} = -5\left(\frac{2}{L}\right)$$

 $\psi_{h(0.1m)} = -5 \, \left(\frac{0.1}{L}\right)$

Si L = 0 (condición de neutralidad): $\psi_m = 0, \psi_h = 0$

9.° Un valor corregido para la velocidad de fricción (u_*) es ahora calculado para cada iteración sucesiva como:

$$u_{*} = \frac{u_{200}k}{ln\left(\frac{200}{z_{om}}\right) - \psi_{m(200m)}}$$

Donde u_{200} es la velocidad de viento a 200 metros (m.s⁻¹), k es la constante de Von Karman's (0.41), z_{om} es el coeficiente de rugosidades de cada pixel (m), y $\psi_{m(200m)}$ es la corrección de estabilidad para el transporte de *momentun* a 200 m.

10.° Un valor corregido para la resistencia aerodinámica en el transporte de calor r_{ah} es nuevamente calculado durante cada iteración como:

$$r_{ah} = \frac{\ln\left(\frac{z_2}{z_1}\right) - \psi_{h(z_2)} + \psi_{h(z_1)}}{u_* k}$$

Donde $z_2 = 2.0 \text{ m}$, $z_1 = 0.1 \text{ m}$, $\psi_{h(z_2)} y \psi_{h(z_3)}$ son las correcciones de estabilidad para el transporte de calor a 2 y 0.1 metros.

11.° Para el proceso de iteración se debe retornar al paso 5.°, y los cálculos en hoja de Excel para un nuevo dT en los pixeles "frío" y "caliente" usando el r_{ah} corregido. Nuevos valores de b y a son también calculados, luego dT es revisado, para cada pixel, como $Dt = b + aT_s$.

12.° El paso 6.° se repite para un valor revisado en la temperatura del aire (T_a) y la densidad del aire (ρ) .

13.° El paso 7.° se repite para calcular un valor corregido para *H*.

14. El paso 8.° se repite para calcular una nueva corrección de estabilidad.

15. Este proceso iterativo se repite hasta que los valores sucesivos para $dT_{cal} y r_{ab}$ en el pixel "caliente" tengan estabilidad.

16.° Finalmente, se calcula el valor corregido para el flujo de calor sensible (*H*) en cada pixel, que será utilizado en el cálculo de la evapotranspiración instantánea.

- Flujo de calor latente (λET)

El flujo de calor latente es la tasa de pérdida de calor latente desde la superficie; gracias a la evapotranspiración, este es calculado para cada pixel.

 $\lambda ET = R_n - G - H$

Donde (λET) es un valor instantáneo para el tiempo de paso del satélite en W.m⁻².

- Evapotranspiración real diaria (ET₂₄)

Para la obtención de la evapotranspiración diaria, inicialmente, obtenemos la evapotranspiración instantánea, que es igual al cociente entre el flujo de calor latente y el calor latente de vaporización ($ET_{inst} = \lambda ET/\lambda$), si este valor lo multiplicamos por los 3600 segundos de una hora obtenemos la evapotranspiración horaria (ET_{μ}).

$$ET_H = 3600 \frac{\lambda ET}{\lambda}$$

Donde λET es el flujo de calor latente (W.m⁻²), λ es el calor latente de evapotranspiración del agua que está en función de la temperatura del agua, por ejemplo, a 20 °C; λ tiene un valor de cerca de 2.45 MJ.Kg⁻¹, el λ puede ser estimado mediante la siguiente ecuación:

 $\lambda = 2.501 - 0.00236 * 10^{6}(T_{o})$

La fracción de evapotranspiración de referencia horaria $ET_{,F}$ es definida como el cociente de la $ET_{,H}$ y la evapotranspiración referencial horaria $ET_{,r}$. Según Allen (2002), es aproximadamente constante durante todo el día y puede ser obtenida mediante la siguiente ecuación.

$$ET_rF = \frac{ET_H}{ET_r}$$

Donde ET_{H} es la evapotranspiración horaria (mm.h⁻¹) y ET_{r} la evapotranspiración de referencia horaria calculada a partir de los datos climáticos (mm.h⁻¹). La $ET_{r}F$ es similar al conocido coeficiente de cultivo K_{c} y es usada para extrapolar la evapotranspiración horaria a periodos mayores como el diario.

Figura 3.17. Gráfico de ET y ET,F en el tiempo diario, observaciones del Dr. Jim Wright (Allen, 2002)

Sebal calcula la ET_{24} asumiendo que la ET_rF es la misma que el promedio para 24 horas. La Figura 3.17. muestra un gráfico de ET y ET_rF en función del tiempo, este gráfico muestra cómo ET varía a lo largo del día, mientras que ET_rF es relativamente constante. Finalmente, el ET_{24} puede calcularse en mm día⁻¹.

$$ET_{24} = ET_rF * ET_{r_24}$$

Donde ET_rF es la fracción de evapotranspiración de referencia horaria y ET_{r-24} es la evapotranspiración de referencia en 24 horas.

- Modelo Metric

Como se comentó anteriormente, los modelos SEB son considerados adecuados para el cálculo de la *ET* en condiciones de estrés hídrico, sin necesidad de conocer las características del suelo o su contenido de humedad. Considerando su operatividad a partir de un modelo SEB nace el modelo Metric (Mapping Evapotranspiration at high Resolution and with Internalized Calibration) basado en el modelo Sebal (Surface Energy Balance Algorithm for Land) propuesto por Bastiaanssen et al. (1998). En la Figura 3.18. se muestra el esquema operativo del modelo Metric, en el que se pueden observar las diferentes entradas (rectángulos azules) y salidas (rectángulos rojos) del modelo. Los rectángulos con fondo gris son variaciones en la estimación de diferentes componentes intermedios que difieren respecto al modelo original (Pôças et al., 2014).

Figura 3.18. Esquema operativo del modelo Metric (Bastiaanssen et al., 1998)

- Radiación neta (R_n)

Su determinación se hace usando la siguiente ecuación, la nomenclatura es similar a la utilizada en el modelo Sebal.

$$R_n = (1 - \alpha)R_{S\downarrow} + R_{L\downarrow} - R_{L\uparrow} - (1 - \epsilon_o)R_{L\downarrow}$$

Figura 3.19.

Esquema de cálculo de R, del modelo Metric (Bastiaanssen et al., 1998)

- Flujo del calor del suelo (G)

En la aplicación de Metric para la obtención de G se utilizan las siguientes ecuaciones definidas por Allen et al. (2007), que dependen de la radiación neta y del índice de vegetación *LAI* (índice de área foliar):

$$\begin{split} G &= 1.8(T_s - 273.15) + 0.084R_n \dots \dots LAI < 0.5\\ \frac{G}{R_n} &= 0.05 + 0.18e^{-0.521\,LAI} \dots \dots LAI \geq 0.5 \end{split}$$

Igualmente, se asigna un valor constante de G/R_n = 0.5 para agua y nieve. La nieve se distingue por tener una temperatura de la superficie (T_s) inferior a 277 K, el índice de vegetación *NDVI* (Normaliced Difference Vegetation Index) inferior a cero y un elevado albedo superficial; mientras que el agua tiene *NDVI* menor que cero y bajo albedo.

Flujo turbulento de calor sensible (H)

Es el que se da debido al transporte de calor, desde la superficie de la cubierta y el suelo a la atmósfera, por el mecanismo de convección, dada la diferencia de temperatura existente entre la superficie y la atmósfera. Su cálculo en Metric se realiza mediante una función aerodinámica basada en el gradiente de temperatura:

 $H = (\rho_{aire} * C_p * dT) / r_{ah}$

Donde ρ_{aire} es la densidad del aire (kg m⁻³), C_p es la capacidad del calor específico del aire (1004 J.Kg⁻¹.K⁻¹), dT (K) es la diferencia de temperatura ($T_1 - T_2$) entre dos alturas (Z_1 y Z_2) y r_{ah} es la resistencia aerodinámica para el transporte de calor en s.m⁻¹.

ET instantánea (Et_{inst}), fracción de ET de referencia (ET,F).

Un valor instantáneo de la ET_{inst} equivalente en lámina de evaporación estimada de la siguiente manera:

$$ET_{inst} = 3600 \frac{ET}{\lambda}$$
$$ET_r F = \frac{ET_{inst}}{ET_r}$$

Valores diarios de evapotranspiración (ET_{24}) son a menudo más útiles que la *ET* instantánea. Metric calcula la ET_{24} asumiendo que la ET_rF instantánea es el mismo que el promedio de 24 horas.

$$ET_{24} = ET_rF * ET_{r_24}$$

3.6. Uso de Programas de Cálculo

Existe una serie de programas para el cálculo de la evapotranspiración, empezando por el más difundido denominado Cropwat, hasta otros de aplicación *online*.

3.6.1.Uso de Cropwat

Cropwat 8.0 para Windows es un programa informático para el cálculo de los requerimientos de agua de los cultivos y los requisitos de riego en función de los datos del suelo, el clima y los cultivos. Además, el programa permite el desarrollo de cronogramas de riego para diferentes condiciones de manejo y el cálculo del esquema de suministro de agua para diferentes patrones de cultivo. Cropwat 8.0 también se puede utilizar para evaluar las prácticas de riego de los agricultores y para estimar el rendimiento de los cultivos, tanto en condiciones de riego como de secano.

Este programa presenta un módulo de inicio que nos interesa para este caso; cálculo de evapotranspiración, el cual requiere datos mensuales de:

Temp Min	Temp Max	Humedad	Viento	Insolación	Bad	ETo
3 °	°C	%	m/s	horas	MJ/m²/día	mm/día

Cargamos Cropwat 8.0, creamos un formulario e ingresamos los datos:

Se ingresan los valores mensuales y automáticamente, al concluir dicho ingreso, arroja los resultados como se muestra a continuación:

Altitud 38	69 m.		Latitud 17.8.	2 *5 •	Estación	Tacna ongitud 70.3	201 1-1
Mes	Temp Min	Temp Max	Humedad	Viento	Insolación	Rad	ETo
	°C	°C	%	m/s	horas	MJ/m²/día	mm/día
Enero	5.2	16.2	60	3.5	5.8	19.7	3.96
Febrero	7.1	15.0	60	3.2	5.7	19.0	3.78
Marzo	5.0	14.7	61	3.1	6.8	19.5	3.61
Abril	4.6	14.7	53	2.9	8.3	19.5	3.60
Mayo	3.0	14.0	43	2.6	9.3	18.4	3.33
Junio	1.2	13.6	39	2.7	9.3	17.1	3.15
Julio	-1.3	13.2	39	2.8	9.6	17.9	3.18
Agosto	-0.1	14.5	42	3.0	9.3	19.8	3.62
Septiembre	1.5	15.0	43	3.2	9.0	21.9	4.11
Octubre	3.1	15.6	44	3.5	8.7	23.2	4.55
Noviembre	1.8	15.8	45	3.5	8.4	23.6	4.62
Diciembre	4.6	16.0	51	3.5	7,2	21,9	4.40

Figura 3.20. Formulario Cropwat con datos y resultados

3.6.2.Uso de Cropwat y Climwat

Climwat es una base de datos climática que se utilizará en combinación con el programa informático Cropwat, y que permite el cálculo de las necesidades de agua de los cultivos, el suministro de riego y la programación del riego para varios cultivos para una variedad de estaciones climatológicas en todo el mundo. Climwat 2.0 para Cropwat es una publicación conjunta de la Unidad de Gestión del Desarrollo del Agua y el Cambio Climático y Bioenergía de la FAO. Este programa ofrece datos agroclimáticos observados de más de 5000 estaciones en todo el mundo, distribuidas como se muestra a continuación:

Figura 3.21. Estaciones climáticas a nivel mundial, base de datos Climwat

Climwat proporciona valores medios mensuales, a largo plazo, de siete parámetros climáticos, a saber:

- Temperatura máxima diaria media en °C.
- Temperatura mínima diaria promedio en °C.
- Humedad relativa media en %.
- Velocidad media del viento en km / día.
- Promedio de horas de sol al día.
- Radiación solar media en MJ / m² / día.
- Precipitación mensual en mm / mes.

- Precipitación efectiva mensual en mm / mes.
- Evapotranspiración de referencia calculada con el método Penman-Monteith en mm / día.

Los datos se pueden extraer, para una o varias estaciones, en el formato adecuado para su uso en Cropwat. Se crean dos archivos para cada estación seleccionada. El primer archivo contiene datos mensuales de precipitaciones a largo plazo (mm/mes). Además, la precipitación efectiva también se encuentra calculada e incluida en el mismo archivo. El segundo archivo consta de promedios mensuales a largo plazo para los siete parámetros climáticos mencionados anteriormente. Este archivo también contiene las coordenadas y la altitud de la ubicación.

El procedimiento es bastante sencillo:

1.° Cargamos el programa Climwat 2.0.

Export New Location Stat	Sons Diapley Zoom In Zoom Out Export Selected Stations Colors Discialmen About
	Target Location or Country
	Choose target coordinates and number of neighbouring stations
	Location (desimal): Longitude: 12483*, Latitude: 419
	Location (",',"): Longitude: 12", 28', 58", [E
	Latitude: 41", 54', 0", N
	Number of stations to be selected: 10 DK
	_ or choose a country from the list
	PADISTAN PALAU PATAMA PAPLA NEW GUINEA PAPLA NEW GUINEA PAPLACULY
	PRUITPINES PRUTAIRN POLIAND PORTUGAL PUERTO RICO County.

Figura 3.22. Pantalla de programa Climwat 2.0

Seleccionamos el país y mostramos las estaciones que existen en la base de datos de Climwat.

Figura 3.23. Listado de estaciones de la base Climwat para Perú

2.° Seleccionamos las estaciones de Perú o alguna de interés y exportamos en la opción "Export Selected Stations".

Figura 3.24. Exportando listado de estaciones

3.° Una vez exportadas las estaciones, ya podemos cargar nuevamente Cropwat y cargar los datos de la estación deseada y calcular ET_o .

País Lo	cation 51				Estación	TACNA	
Altitud 4	69 m.	1	Latitud 18.06	5 °S 🔹		ongitud 70	30 W
Mes	Temp Min	Temp Max	Humedad	Viento	Insolación	Rad	ETo
	J*	°C	%	m/s	horas	MJ/m²/dia	mm/me
Enero	16.0	27.0	67	1.7	5.6	19,3	131.42
Febrero	16.0	28.0	70	1.7	6.4	20.1	121.80
Marzo	15.0	27.0	69	1.7	6.0	18,4	124.15
Abril	12.0	25.0	73	1.7	6.9	17.5	102.95
Mayo	10.0	22.0	72	1.7	7.0	15.5	86.26
Junio	9.0	20.0	77	1.4	6.8	14.2	66.37
Julio	8.0	19.0	80	1.3	6.6	14.3	65.24
Agosto	9.0	20.0	78	1.3	6.6	16.1	77.24
Septiembre	10.0	21.0	77	1.3	6.1	17.6	87.88
Octubre	11.0	22.0	73	1.6	7.1	20.8	112.25
Noviembre	13.0	24.0	69	1.7	7.3	21.8	123.99
Diciembre	14.0	26.0	65	1.7	6.8	21.3	136.40
Promedio	11.9	23.4	72	16	6.6	18.1	1235 9

Figura 3.25. Cálculo final de la ET_a usando data de Climwat

3.6.3.OnlineCalc Víctor Miguel Ponce

La calculadora *online* del Dr. Víctor Miguel Ponce la obtenemos en la web: HTTP://PONCE.SDSU.EDU/, San Diego State University (SDSU), en la parte superior derecha se encuentra el botón para activar la onlineCalc.

Figura 3.26. Página web: http://ponce.sdsu.edu/, San Diego State University (SDSU)

La calculadora en línea del Dr. Ponce trae muchos programas dirigidos a hidrología e hidráulica, nosotros nos centraremos en los que corresponden a evapotranspiración:

La calculadora en línea trae las siguientes opciones: Blaney-Criddle, Penman, Penman-Monteith para cultivo de referencia, Priestley-Taylor, Thorntwaite, Hargreaves, Penman-Monteith para ecosistemas y Shuttleworth-Wallane.

Con Blaney-Criddle se ingresó (para el mes de enero) una temperatura media de 15 °C, latitud sur 18°, insolación media, humedad relativa media, velocidad de viento moderada y cultivo de referencia, alfalfa. El cálculo arroja un valor de $ET_o = 124.96$ mm/mes y $ET_c = 121.84$ mm/mes.

online_blaney_criddle: Poten	tial evapotranspiration by the Blancy-Criddle method
	Formulas
And the second	$p = \int (m, L, H)$ $f = p(0.46t + 8.18)$
Contraction of the second second second	$a, b = \int (1, 3H, w)$ (II) _a = $a + bf$
A second second second second second second second second	$k_{e} = \hat{k}(Type \text{ of } oxop)$ (21) = $k_{e}(ET)_{o}$
Steven I. All apple addresses when	Reference
Sand Lake And House	Ponce, V. M., 1989: Engineering Hydrology, Principles and Practices, Prentice Hail, pages 48-51.
INPUT DATA: Description1 (Sample input)	ECHO OF INPUT:
Month [m]: January 🔻	Month January
Mean daily temperature (t) (°C);	Actual Insolation Ime Medium Minimum relative humidity Medium
Latitude [L] (degrees): 18	Daytime wind speed. Moderate Type of crop: Attatta
Hemisphere [H]: South •	OUTPUT:
Actual insolation time [i]: Medium 🔻	+ Daily ET _e = 4.03 mm/day
Minimum relative humidity (RH): Modium *	Monthly E1 _o = 124.96 mm Daily ET _o = 3.93 mm/day
Daytime wind speed [w]: Mederate *	Monthly ET _c = 121.84 mm
Type of crop; Alfaira 🔻	
	Deviate Devet
L.C.	es.vireire
Your request was processed at 01:34:52 pm on April 20th, 2020 [200420 13:	34:52].
Thank you for running onl	ine_blaney_ortddle. Please call again, [070603]

Figura 3.28. Cálculo de ET con Blanev-Criddle

Usando la formulación para Penman, mes de enero, temperatura media mensual 20 °C, radiación neta mensual de 550 cal/cm²-día, humedad relativa de 70 % y velocidad de viento 200 km/h.

Figura 3.29. Cálculo de ET con Penman

onitme_peruman: Potential o	vapotranspiration by the Penman method
	Formulas
	$\mathbf{e}_{n} = \oint (\mathbf{T}_{n})$ $\mathbf{E}_{n} = \oint (\mathbf{Q}_{n}, \mathbf{T}_{n})$
the second se	$E_{g} = (0.013 + 0.00010 v_{2}) v_{0} (100 - 20)/100)$
A REAL PROPERTY AND A REAL	$\alpha = \hat{\mu}(T_n) \qquad \qquad \Sigma = [\Pi \Sigma_n + \Sigma_n] / (\alpha + \mathbb{I})$
	Reference
	Ponce, V. M., 1989. Engineering Hydrology, Principles and Practices,
9PUT DATA: Description] (Banglie input) Aonth: January ▼ Mean monthly air temperature T _a (°C): <u>26</u> Mean monthly net radiation Q. (ca/kom ² /dpy)) <u>550</u>	ECHO OF INPUT: Asinth January OUTPUT:
(elative humidity o (%)	Uaily E1 ₀ = 0.743 emiday Monthly ET ₀ = 23.03 em
Vind velocity at 2-m depth v ₂ (km/dey): 200	
Calculat	te Rasse
Your request was processed at 01:39:56 pm on April 20th, 2020 [200420 13:39:5	6].
	Missis all such taiment

Usando la formulación para Penman-Monteith, mes de enero, temperatura media mensual 20 °C, radiación neta mensual de 550 cal/cm²-día, humedad relativa de 70 %, velocidad de viento de 200 km/h y presión atmosférica de 1013 mb.

Formulas $(\mathbf{e}_3 - \mathbf{e}_2) \cong (\mathbf{e}_3 - \mathbf{e}_2) = \mathbf{e}_2 [1 + (\phi/100)]$
$E_n = \phi_n / (\rho A)$ $E_n = 8 \text{second} \left[(\rho_n \phi_n) / (\rho A \phi_n) \right] (a_n - a_n) (x_n + x_n)^{-1}$ $\Delta = (0.00215 \ T_n + 0.8912)^7$ $\forall n = \forall [1 + (x_n / x_n)]$
$\vec{\mathbf{E}} = (\Delta \mathbf{E}_{\pm} + \gamma \mathbf{e}_{\pm}) / (\Delta + \gamma \mathbf{e})$
ECHO OF INPUT: Month: January OUTPUT: • Stomatal resistance $t_a = -0.694$ s on $^{-1}$. • Aerodynamic resistance $t_g = -0.899$ s on $^{-1}$. • Daily reference crop PET = -0.644 or d $^{-1}$. • Monthly reference crop PET = -10.96 or.
Reset

Para el método de Thornthwaite, mes de enero, latitud sur 18°, ingresamos las temperaturas medias mensuales (12 valores de enero a diciembre): 10.70, 10.03, 9.85, 9.65, 8.50, 7.40, 5.93, 7.20, 8.25, 9.35, 8.80, 10.30.

	Figura	a 3.30.	
Cálculo de	ET con	Penman-Mon	teit

Para la aplicación de la fórmula de Priestley-Taylor usamos el mes de enero, temperatura del aire 20 °C, radiación neta 550 cal/cm²-día y la opción "zona árida".

online_priestley_taylor: Potential evapotranspiration by Priestley-Taylor method		
	Formulas $\begin{split} \alpha &= \beta(\pi_{n}) \\ \rho, \lambda &= \beta(\pi_{n}) \\ \rho &= \lambda + \beta(\pi_{n}) \\ \rho &\equiv 1.74 \alpha(Q_{n}/(\rho\lambda)) / (\alpha + 1) (Arist) \\ etr &= 1.26 \alpha(Q_{n}/(\rho\lambda)) / (\alpha + 1) (Humid) \end{split}$	
NPUT DATA: [Description] [Bample input] Month: January ▼ Air temperature T _a (°C): <u>20</u> Net radiation Q _n <u>550</u> (cal cm ⁻² d ⁻¹): Select: <u>Arief</u>	ECHO OF INPUT: Month: January Durput: • Daily PET = 1,119 cm d ⁻¹ , • Monthly PET = -34,698 cm.	
Your request was processed at 01:54:49 pm on April 20th, 2020 [2	Calculate Reset 00420 13:54:49].	

Finalmente, para el caso Penman-Monteith, para ecosistemas, usamos la misma data que los casos anteriores y agregamos resistencia estomática = 0.694 s/cm y resistencia aerodinámica = 0.899 s/cm.

CAPÍTULO IV: INTELIGENCIA ARTIFICIAL Y ET

4.1. Aspectos Generales

Actualmente se enfrentan dificultades al formular procesos hidrológicos, incluido el de evapotranspiración (ET). Los métodos empíricos convencionales para formular dichos procesos poseen algunas deficiencias. El enfoque de inteligencia artificial surge como la mejor solución posible para mapear las relaciones entre parámetros climáticos y ET, incluso con conocimiento limitado de las interacciones entre variables (Chia et al., 2020).

Es así que se vienen utilizando muchas técnicas de inteligencia artificial (IA); estas han contribuido a la comunidad de sensores remotos en forma de procesamiento de datos satelitales, desde lo básico hasta el nivel avanzado. Una amplia variedad de aplicaciones y una enorme cantidad de datos satelitales, que crecen exponencialmente, tienen demandas críticas en la aceleración, reducción de costos y automatización en su procesamiento mientras se mantiene la precisión. Comenzamos con la necesidad de técnicas de IA y evolución para cambios revolucionarios en la teledetección y otras áreas (Sisodiya et al., 2020).

Los algoritmos de aprendizaje automático pueden ser una herramienta poderosa para la predicción de la evapotranspiración real cuando hay disponible una serie temporal de pocos años. A partir de las mediciones de un número suficiente de parámetros climáticos es posible obtener modelos de pronóstico caracterizados por una precisión muy alta (Granata, 2019). Las disciplinas de la inteligencia artificial se muestran en la siguiente figura.

Figura 4.1.

4.2. Modelos de Inteligencia Artificial

4.2.1.Red Neuronal Artificial (RNA)

La red neuronal artificial (RNA) o en inglés: artificial neural network (ANN), como lo sugiere su nombre, es una variación del modelo de aprendizaje automático que se asemeja a la red neuronal del cerebro humano. Las neuronas están conectadas entre sí a través de sinapsis. En la RNA, las sinapsis se reemplazan por conexiones de pesos y sesgos; esto ayuda a mapear la relación entre entradas y salidas (Abiodun et al., 2018). El modelo de perceptrón multicapa (MLP) es uno de los primeros tipos de RNA, y fue introducido por Rosenblatt (1958); sin embargo, no fue hasta el año 1989 que se demostró que el MLP podía aproximar funciones después del entrenamiento. En 1992, junto con el avance del desarrollo informático, el MLP mostró, por primera vez, un mejor rendimiento que el método estadístico tradicional (Lek & Guégan, 1999).

La aplicación del MLP en la estimación de ET_o fue iniciada por Kumar et al. (2002). En este estudio, los autores recopilaron los seis parámetros esenciales para estimar ET_o usando el modelo Penman-Monteith (PM) en Davis, California. Los autores comparan el rendimiento del MLP con diferentes arquitecturas capacitadas con diferentes datos. El resultado del estudio mostró que cuando los seis parámetros se alimentaron como entrada del modelo MLP, una sola capa de siete neuronas ocultas con 5000 ciclos de aprendizaje fue suficiente para representar el proceso no lineal de *ET*. El entrenamiento del modelo utilizando la medición del lisímetro como objetivo produjo estimaciones ligeramente más precisas que el uso del modelo PM.

El éxito alcanzado por Kumar et al. (2002) atrajo la atención de los investigadores para estudiar más a fondo la capacidad del MLP en la estimación de ET_o . Los intentos de reducir el número de parámetros requeridos se hicieron continuamente. Rahimikhoob (2010) entrenó al MLP con solo datos de temperatura y radiación en ocho estaciones diferentes en la costa sur del mar Caspio ubicadas en el norte de Irán (clima subtropical húmedo). Al usar solo la temperatura máxima, la temperatura mínima y la radiación global, los modelos entrenados se compararon con el modelo Hargreaves-Samani (HS).

La introducción del MLP también había alentado el establecimiento de otras formas del modelo RNA. Algunos de los ejemplos son la red de función de base radial (RBF), la red neuronal de regresión generalizada (GRNN), la red neuronal de retropropagación (BPNN) y la máquina de aprendizaje extremo (ELM). Estos algoritmos lograron rendimientos prometedores en la estimación de ET_o . Las características de cada modelo RNA se proporcionan en la Figura 4.2.

Las características de los modelos mostrados se describen a continuación:

Perceptrón multicapa (MLP)

- Consiste en una capa de entrada, una o más capas ocultas, y una capa de salida.
- Las señales se pasan de la capa de entrada a la capa de salida en dirección hacia adelante.
- Normalmente use la función de activación sigmoide para mapear la entrada a la salida.

Función de base radial (RBF)

Consiste en una capa de entrada, una capa oculta y una capa de salida.

- La función de activación gaussiana se calcula para todos los nodos en la capa oculta.

Red neuronal de regresión generalizada (GRNN)

- Un modelo basado en probabilidad.
- Consiste en una capa de entrada, una capa de patrón, una capa de suma y una capa de salida.
- La capa de patrón se usa para agrupar los datos y entrenar el modelo.
- Los resultados de los nodos de la capa de suma se normalizan en la capa de salida.

Red neuronal de retropropagación (BPNN)

- Consiste en una capa de entrada, una o más capas ocultas y una capa de salida.
- Incluya un algoritmo de propagación hacia atrás para retroalimentar el error de salida a fin de optimizar el rendimiento del modelo ajustando pesos y sesgos.

Máquina de aprendizaje extremo (ELM)

- Consiste en una sola capa de entrada, una capa oculta y una capa de salida.
- El número de nodos en la capa oculta se genera aleatoriamente.
- Solo se debe ajustar la cantidad de nodos en la capa oculta para optimizar el rendimiento del modelo.

El RBF se utilizó por primera vez para convertir los datos de evaporación de la bandeja en ET_o (Feng et al., 2017). Este estudio demostró que el principal obstáculo de la estimación empírica, que es la dependencia de los datos, puede resolverse. La red RBF utilizada en el estudio solo requirió datos de evaporación y radiación de la bandeja; sin embargo, fue capaz de lograr una mayor precisión en el modelo PM.

Ladlani et al. (2012) hicieron un estudio comparativo sobre el rendimiento de la RBF y la GRNN para predecir ET_o en Argel de Argelia; al mismo tiempo, los dos modelos RNA fueron contrastados con modelos empíricos; Priestly-Taylor (PT) y Hargreaves-Samani (HS). En comparación, el modelo GRNN tuvo el mejor rendimiento en términos de bajo error y alta correlación. La GRNN, que se desarrolló a
partir de la RBF, demostró, por primera vez, tener una capacidad superior que la RBF; esto podría deberse a la inclusión de una capa de suma en la GRNN, lo que podría mejorar la estimación por el RBF. El rendimiento de la GRNN en el cálculo de ET_o se compara constantemente con otros modelos de aprendizaje automático (Feng et al., 2017). De los resultados en la literatura, la GRNN no poseía ninguna ventaja prominente sobre la ELM, pero se consideró que era una buena alternativa para los modelos convencionales.

Traore et al. (2010) adoptaron un enfoque diferente para aplicar el modelo de aprendizaje automático en la estimación de la ET_o ; utilizaron el modelo BPNN. En su estudio se recogieron datos meteorológicos de la zona sudano-saheliana. El modelo HS, que es un modelo empírico basado en la temperatura, se comparó con el modelo BPNN que se entrenó solo con datos de temperatura. Los resultados mostraron que el modelo de inteligencia artificial superó al modelo HS convencional. Además de eso, los autores también revelaron que la inclusión de datos de velocidad del viento podría mejorar efectivamente la precisión en comparación con la radiación y la humedad relativa.

El último desarrollo de modelos de inteligencia artificial resultó en la introducción de la ELM como una opción de RNA. Se probaron varias combinaciones diferentes de parámetros de entrada que consistían en temperatura, velocidad del viento, humedad relativa y radiación para estudiar la combinación más favorable. Aunque la ELM y la BPNN mostraron resultados comparables, los investigadores opinaron que la ELM era preferible debido a su cálculo eficiente y su gran capacidad de generalización. La iteración rápida de la ELM se debe al hecho de que solo se debe ajustar el número de nodos de capa ocultos, y esto a su vez reduce el riesgo de sobreajuste.

Actualmente, las investigaciones relacionadas con la predicción RNA de *ET* se centraron en estudios de casos específicos. En lugar de estimar ET_o , los investigadores comenzaron a utilizar el MLP para predecir PET directamente. Dado que el PET depende en gran medida de los tipos de cultivos (diferentes *Kc*), esto resultó en que el estudio fuera muy específico en términos de regiones y plantaciones.

4.2.2.Máquina de Vectores de Soporte (SVM)

La máquina de vectores de soporte, o su denominación en inglés *support vector machine* (SVM), es otro algoritmo popular utilizado en el modelado de aprendizaje automático, especialmente cuando se afirma que es potente y robusto en las tareas de regresión y clasificación. Cortes & Vapnik (1995) establecieron la base del modelo SVM actual. En lugar de involucrar un gran número de neuronas e iteraciones para inferir la relación entre entradas y salidas, la SVM traza los conjuntos de datos en un espacio de características. La relación entre entradas y salidas se predice utilizando la función del núcleo, donde la complejidad y la precisión del problema se pueden optimizar al mismo tiempo.

Dado que la predicción ET_o es más probable que sea un problema de regresión en lugar de un problema de clasificación, normalmente se usa una variación de la SVM, que es la regresión del vector de soporte (SVR). En la SVR se utiliza una función de pérdida para definir el margen de desviación, así como la función para aproximar la salida objetivo. El principio de funcionamiento de la SVM se muestra en la Figura 4.3.

Figura 4.3. Principio de funcionamiento de la máquina de vectores de soporte (Cortes & Vapnik, 1995)

146

Según Raghavendra & Deka (2014), la SVM se utilizó ampliamente en la aplicación de hidrología, incluida la estimación de ET_o . Las ventajas y fortalezas de la SVM incluyen alta robustez, capacidad para resolver problemas complejos menos susceptibles de sobreajuste y pueda proporcionar una descripción compacta del modelo (Zendehboudi et al., 2018). La estructura de red de la SVM se ilustra en la Figura 4.4.

La utilización de la SVM en la predicción de ET_o con datos de observación en tierra comenzó en 2010 (Kişi & Çimen, 2010). El estudio de caso se realizó en California, que representaba un sistema climático Köppen-Geiger. Las predicciones de la SVM se compararon con el Penman, el modelo HS, el modelo Ritchie y el modelo Turc. Los autores descubrieron que cuando todos los parámetros climáticos estaban disponibles, la SVM superó a todos los demás modelos en todas las estaciones estudiadas.

A partir de la literatura revisada se puede inferir que la SVM tiene el potencial de ser confiable para la estimación precisa de ET_o y ETP; sin embargo, la literatura también reveló que el rendimiento de la SVM podría verse fuertemente afectado por la selección de las funciones del núcleo y la calidad de los datos de entrada. Esto también podría justificarse por los resultados contradictorios de los investigadores sobre la comparación entre SVM y RNA. El costo computacional es otra preocupación de la aplicación SVM, particularmente cuando se trata de una alta dimensionalidad.

4.2.3.Modelos Difusos

En inglés: fuzzy models, introducido por Zadeh (1965). La lógica difusa permite la descripción de datos, de tal manera que se puede dar un "grado de probabilidad". En otras palabras, mediante el uso de lógica difusa, en lugar de describir en términos de "A" o "B", se puede producir un grado de membresía entre 0 y 1 para que la descripción se vea como "en parte A" y "en parte B". La aplicación de la lógica difusa requiere una configuración inicial por parte de expertos para determinar el tipo de distribución seleccionando una función de membresía (generalmente se elige la función gaussiana). Además, se deben alimentar tres ingredientes principales al sistema de inferencia difusa (FIS), a saber, un conjunto de bases de reglas difusas, una base de datos que contiene las funciones de membresía y un mecanismo (Sugeno o Mamdani) para aplicar las reglas difusas en la entrada y la salida (Kisi, 2013). La principal diferencia entre la lógica difusa de Sugeno y Mamdani es el enfoque para calcular la salida final. El flujo general de un FIS se ilustra en la Figura 4.5.

La historia de la aplicación de la lógica difusa para estimar *ET* comenzó en 2009. Keskin et al. (2004) pronosticaron la evaporación del lago Eģirdir en Turquía utilizando datos climáticos de observación del suelo. Los autores no solo estudiaron la viabilidad de la lógica difusa que predice la evaporación, sino que también se evaluó el rendimiento de la lógica difusa en comparación con la RNA, la SVR de mínimos cuadrados y el sistema de inferencia difusa neuro-adaptativo (ANFIS).

De la revisión de publicaciones se puede establecer, que a diferencia del aprendizaje no lineal en RNA y los trucos del núcleo aplicados en SVM, la lógica difusa proporciona otra forma para que una máquina aprenda el fenómeno bastante complejo de la evapotranspiración. La principal ventaja de los modelos basados en lógica difusa sobre la RNA y la SVM es que en realidad permiten una forma más lingüística de describir los datos.

4.2.4. Modelos Basados en Árboles

En inglés: tree based models. Breiman fue la primera persona en compilar los árboles de decisión en dos categorías principales: el árbol de clasificación y el árbol de regresión; sin embargo, fue Quinlan (Adams & Sterling, 1992) quien proporcionó una mejor comprensión sobre el funcionamiento de los modelos de árboles. En el trabajo de Quinlan se afirmó que la decisión continuaría dividiéndose y creciendo mientras los datos dentro de los nodos de los árboles todavía se consideraran impuros. En el caso de ET se prefiere utilizar un modelo de árbol para el análisis de regresión sobre la clasificación. En este contexto, Pal & Deswal (2009) introdujeron un criterio de división, ampliamente aceptado para el modelo de árbol M5. Afirmaron que, para producir mejores divisiones con la mayor eficiencia de cálculo, los datos, dentro de cualquier nodo, deberían dividirse de tal manera que la reducción de la desviación estándar pudiera maximizarse. Se observó que el modelo de árbol M5 podría producir resultados de alta correlación con el valor de ET_{o} aunque los errores de las estimaciones aumentaron gradualmente cuando se redujeron los parámetros climáticos de entrada.

4.3. Modelos Híbridos

El modela híbrido que, combina dos o más modelos, puede mejorar de alguna manera el rendimiento del modelo base al fusionar sus fortalezas individuales, con las de otros como se demostró en los trabajos de investigación mencionados anteriormente. Los investigadores son ambiciosos para desarrollar modelos de inteligencia artificial que puedan funcionar en condiciones más severas; por ejemplo, en entornos con parámetros climáticos limitados, amplia región de interés u horizonte de predicción más largo, entre otros; por lo tanto, esta sección se centrará en presentar las técnicas más utilizadas para desarrollar modelos híbridos de inteligencia artificial (Chia et al., 2020).

4.3.1.Fusión de Datos y Modelado de Conjuntos

En inglés *"data fusion and ensemble modelling"*. Presenta las siguientes alternativas:

4.3.1.1. Promedio. La idea del modelado de conjuntos surgió en 2005, se usó para pronosticar el clima para superponer predicciones de múltiples modelos (Palmer et al., 2005). El modelo de conjunto más simple posible es promediando, claramente, el producto de los miembros del conjunto; el promedio simple obtiene la media de los modelos. Con el fin de corregir lo absurdo en el supuesto de un promedio simple, algunos estudios prefirieron usar el promedio ponderado. Los valores de peso asignados a los modelos se clasifican según ciertas medidas de rendimiento. Nourani et al. (2019) propusieron utilizar el coeficiente de determinación como referencia de clasificación; sin embargo, estos dos métodos no fueron lo suficientemente completos como para proporcionar información precisa para modelos individuales en un conjunto.

Alternativamente se propuso una medida conocida como la habilidad simple de Taylor. Para cada modelo individual se asignará un puntaje de habilidad de Taylor como valor de peso. Se considera que el puntaje de habilidad de Taylor es más completo ya que tiene en cuenta el coeficiente de correlación y la desviación estándar relativa. Este enfoque es utilizado por Yao et al. (2017), donde se demostró que el modelo de conjunto producido a partir de la simple fusión de habilidades de Taylor podía producir una estimación espacial que era comparable a la técnica de teledetección. No obstante, los autores expresaron la preocupación de que la fusión de habilidades simples de Taylor carece de la capacidad de describir físicamente los fenómenos de *ET*; esto condujo a una popularidad bastante baja de este método entre los investigadores de todo el mundo.

4.3.1.2. Ensacado. Una de las técnicas más comunes para hibridar modelos de inteligencia artificial es la técnica de fusión de datos (modelado de conjunto). Existen varias estrategias que pueden conducir al resultado deseado; un método es el de agregación *bootstrap* (ensacado). En general, la agregación *bootstrap* implica dos partes principales: remuestreo y agregación. La agregación de *bootstrap* es especialmente útil cuando uno tiene un tamaño de muestra más pequeño. Durante la etapa de remuestreo las muestras recolectadas serán tratadas como una "población aparente". Se producirán bolsas de "muestras" a partir de la "población aparente" mediante el muestreo con el método de reemplazo. Las bolsas de "muestras" tendrán un tamaño equivalente con su "población aparente" (Breiman, 1996). La aplicación de *bootstrap* en la estimación ET_o es común. Kim et al. (2014) aplicaron bootstrap agregado en la GRNN para estudiar el rendimiento de la informática suave en el pronóstico de ET_{α} . El estudio mostró que el uso de bootstrapping, solo para extender únicamente el tamaño de los datos de entrenamiento, era insuficiente para producir una mejora significativa en los modelos GRNN. En cambio, los autores sugirieron entrenar múltiples modelos para obtener su producción agregada. Se opinó que este último podría reducir efectivamente el error de generalización. Este estudio fue el pionero en utilizar la agregación *bootstrap* para mejorar los modelos de inteligencia artificial al calcular la ET_{o}

- 4.3.1.3. Enfoques de Modelado Bayesiano. Además del promedio y la agregación *bootstrap*, otra técnica muy útil para crear un modelo de conjunto es a través de los enfoques de modelado bayesiano. Los enfoques de modelado bayesiano utilizan las reglas de Bayes en estudios estadísticos. Existen dos estrategias principales cuando se aplican los enfoques de modelado bayesiano en los procesos hidrológicos de modelado, a saber, la selección del modelo bayesiano y el promedio del modelo bayesiano (Höge et al., 2019). Aunque ambos enfoques se originaron a partir de los mismos fundamentos, sus intuiciones aún podrían mostrar diferencias notables. La utilidad de los enfoques de modelado bayesiano ha dado como resultado la introducción de varios algoritmos relacionados, como la probabilidad conjunta bayesiana y la regresión bayesiana (Khoshravesh et al., 2017; Zhao et al., 2019). Se pensaba que la regresión bayesiana podía proporcionar una idea de la selección de los parámetros de entrada, así como su relación con ET_o.
- **4.3.1.4. Algoritmo de Refuerzo**. El refuerzo es una técnica mediante la cual se mejora la precisión de la predicción mediante estimaciones compuestas de varios estudiantes débiles (Hassan et al., 2005). A diferencia del promedio del modelo

bayesiano, el algoritmo de refuerzo funciona en un método paso a paso, donde se agrega un alumno a la vez para minimizar la función de pérdida. En el algoritmo de refuerzo, el primer alumno intentará buscar un valor óptimo de la función de pérdida. Posteriormente, los siguientes modelos se adaptarán al conjunto y trabajarán en los residuos de sus predecesores. Con los años se han establecido muchas versiones de algoritmos de refuerzo, cada una con su propia distinción novedosa. Algunos métodos de refuerzo, comúnmente conocidos, incluyen el aumento de gradiente (Friedman, 2001), el aumento adaptativo (Freund & Schapire, 1995), el aumento de gradiente extremo (Chen & Guestrin, 2016) y el impulso categórico (Dorogush et al., 2018). En los últimos años, el uso del algoritmo de refuerzo en la estimación de ET_o se ha vuelto cada vez más popular.

- 4.3.1.5. Conjunto Neural No Lineal. Las técnicas de fusión de datos discutidas previamente se desarrollan en base a ciertas lógicas estadísticas. Existe un tipo de técnica de fusión de datos que depende de la teoría de la caja negra conocida como el conjunto neural no lineal. Para resumir, los resultados de los modelos individuales de inteligencia artificial se introducen en una red neuronal secundaria para ser entrenados una vez más. En otras palabras, se utilizará una RNA para ensamblar modelos individuales de inteligencia artificial. Este método había sido aplicado por Nourani et al. (2019) a través de la combinación RNA, SVM, ANFIS y regresión lineal múltiple. En comparación con el promedio simple y el promedio ponderado, el conjunto neural no lineal produjo un mejor rendimiento. Se obtuvieron observaciones similares cuando utilizaron un conjunto neural no lineal para combinar modelos empíricos. Esto demostró que, para un proceso altamente no lineal como ET, el promedio podría ser insuficiente para capturar la complejidad.
- 4.3.1.6. Modelos de Conjunto para Teledetección. Uno de los primeros intentos de utilizar el modelo de aprendizaje automático para estimar ET_o con datos de detección remota se realizó en los Estados Unidos, donde los sitios de AmeriFlux estaban disponibles (Yang et al., 2006). En el estudio, la temperatura

de la superficie terrestre, el índice de vegetación mejorado, la radiación de onda corta y los datos de cobertura terrestre se recuperan de imágenes satelitales que proporcionaron una cobertura de 1 km por 1 km y un intervalo de tiempo de ocho días. Los valores de ET_o se estimaron utilizando SVM, RNA y regresión múltiple. Se realizaron más estudios para incluir más modelos de inteligencia artificial, como el modelo de árbol M5, ensacado, bosque aleatorio, ELM y árbol impulsado; sin embargo, la precisión de estos estudios se vio limitada por la calidad de las imágenes para recuperar los datos meteorológicos estimados.

La utilización del enfoque de teledetección en la estimación de ET_o elimina la restricción de la cobertura espacial. Se pueden procesar imágenes satelitales de diferentes resoluciones para recuperar información valiosa durante la predicción. El método de detección remota también permite la provisión de datos en tiempo real para que sea posible y permita el monitoreo continuo de ET de ciertas regiones. El desarrollo de algoritmos de fusión de datos combina con éxito diferentes imágenes de satélite y esto, a su vez, resulta en más información para ser utilizada en la predicción ET_o . A pesar de todo esto, el uso de la teledetección todavía está en su etapa inicial y, por lo tanto, se pueden esperar herramientas más robustas y potentes en el futuro cercano.

4.3.2. Descomposición de Datos

Las referencias anteriores, principalmente, abordan la explotación de datos históricos como insumos para construir un modelo de estimación; sin embargo, las tendencias temporales y las variaciones de *ET* son de suma importancia, ya que pueden ser una herramienta predictiva para ayudar a la toma de decisiones; por lo tanto, un buen modelo de inteligencia artificial podrá proporcionar dicha información. Los datos relacionados con *ET* podrían ser muy dinámicos y contener ruidos innecesarios. La descomposición de los datos es necesaria para filtrar los ruidos con el fin de recuperar información útil.

Cobaner (2013) convirtió los datos de evaporación de tanques clase A en ET_o mediante la descomposición de *wavelet*. El estudio solo se

centró en el efecto de la transformación *wavelet*, en lugar de usar una RNA con un modelo de regresión para el análisis. Según Partal (2009), la transformación de *wavelet* se había aplicado con éxito en muchos procesos de investigación hidrológica; de hecho, se demostró que una combinación de ANN con transformación de *wavelet* es factible en muchos otros estudios.

Además de la transformación *wavelet*, también hay otras variaciones de descomposición de datos; por ejemplo, Adarsh et al. (2018) utilizaron una descomposición en modo empírico multivariante para pretratar los datos sin procesar (temperatura, radiación solar, humedad relativa y velocidad del viento). Misaghian et al. (2017) proporcionaron otra forma de descomposición de datos a priori para estimar ET_o . Los datos de ET_o se representaron en un espacio vectorial multidimensional o tensorial. En la Figura 4.6. se muestran rutas para desarrollar modelos híbridos utilizando diferentes enfoques de modelado. En la Tabla 4.1. se muestra, en resumen, las diferentes técnicas de hibridación (Chia et al., 2020).

Técnicas de hibridación	Variaciones	Principio	Solicitud		
	Promedio simple	Trate todos y cada uno de los modelos de inteligencia artificial como modelos igualmente buenos obteniendo su valor medio de salida			
Promedio	Promedio ponderado	Asigne pesos a cada modelo de inteligencia artificial en función de ciertas medidas de rendimiento antes de promediar sus resultados	Adecuado para problemas menos complejos donde las salidas de varios modelos se pueden promediar directamente		
	Habilidad simple de Taylor	Los pesos asignados a cada modelo de inteligencia artificial se derivan considerando más de una medida de desempeño			
<i>Bootstrap</i> agregado		Se crean bolsas de muestras a partir de la muestra original ("población aparente") para que se pueda entrenar más de un modelo y se agreguen los resultados	Adecuado cuando el tamaño de la muestra original es demasiado pequeño o los resultados tienen una alta varianza y sesgo		
Enfoques de modelado bayesiano	Promedio del modelo bayesiano; selección de modelo bayesiano	Los pesos asignados a cada modelo de inteligencia artificial se calculan en función de las probabilidades posteriores dado que el modelo explica con precisión los problemas	Se puede usar para evaluar la idoneidad o la capacidad de un modelo para describir un problema		
Algoritmo de refuerzo	Aumento de gradiente; gradiente extremo; impulso de aumento de gradiente de luz	Combine varios alumnos débiles (modelos de inteligencia artificial de bajo rendimiento) para formar un modelo fuerte	Adecuado para ser utilizado cuando hay numerosos estudiantes débiles de diferentes aspectos disponibles.		
Conjunto neural no lineal		Alimente la salida de varios modelos en una ANN secundaria y confíe en la operación de caja negra para obtener el conjunto	Será el último recurso cuando ningún otro método de hibridación más intuitivo sea adecuado para crear un conjunto		
Descomposición de datos	Descomposición <i>wavelet</i> ; descomposición en modo empírico multivariante; descomposición del tensor	Elimine el ruido de los datos de la serie temporal para obtener las tendencias de diferentes resoluciones temporales con el fin de pronosticar las tendencias futuras	Se puede usar cuando hay datos de series temporales disponibles y cuando es necesario pronosticar eventos futuros		
STARFM		Aprenda a usar pares de imágenes satelitales para calcular predicciones basadas en una sola imagen	Para la aplicación de datos de teledetección		
ESTARFM		Mejora en STARFM para manejar imágenes con pixeles o resoluciones no uniformes	Para la aplicación de datos de teledetección		
Conjunto basado en filtros Kalman		Estime el modelo de estado utilizando solo el modelo observable como entrada	Se puede usar cuando hay definiciones claras de modelos observables y de estado		

Tabla 4.1.Diferentes técnicas de hibridación (Chia et al., 2020)

Según Chia et al. (2020), la estimación de *ET* es de suma importancia, especialmente cuando se trata de actividades agrícolas. Esta revisión ha esbozado las trampas de los modelos convencionales basados en el balance de energía que incluyen la alta dependencia de los parámetros climáticos; además, los modelos empíricos podrían ser específicos para ciertas regiones y esto a su vez requiere una calibración adicional antes de que los modelos puedan usarse. El surgimiento de modelos de inteligencia artificial, que operaban bajo la premisa de un principio de caja negra, tiene como objetivo superar estos problemas. La integración de la inteligencia artificial reactiva la posibilidad de reducción de los parámetros climáticos, ahora tan necesarios para la estimación de *ET*.

Un aporte importante es que proporciona una compilación de técnicas de hibridación sugeridas para cada modelo de inteligencia artificial. Esto podría servir como una guía en términos de selección de parámetros y estrategias de conjunto para futuros investigadores que deseen comenzar de nuevo en la estimación de *ET* utilizando los modelos híbridos de inteligencia artificial. En la Tabla 4.2. se muestra un mapeo de estas técnicas de hibridación para modelos de IA propuesto por Chia et al. (2020).

EVAPORACIÓN Y EVAPOTRANSPIRACIÓN EN HIDROLOGÍA MEDICIÓN, ESTIMACIÓN Y APLICACIONES

		lelo base		
Técnica de hibridación	Red neuronal artificial	Máquinas de vectores soporte	Modelo basado en árbol	Lógica difusa
Promedio	√ (1)			
<i>Bootstrap</i> agregado	\checkmark	SVM no requiere muchos datos para mapear la relación; en cambio, necesita un buen vector de soporte (datos) para inferir la relación entre entradas y salidas. Por lo tanto, la agregación <i>bootstrap</i> rara vez se usa en modelos híbridos SVM.	\checkmark	El modelo difuso contiene reglas que el lenguaje
Promedio del modelo bayesiano				humano puede interpretar. Los investigadores
Algoritmo de refuerzo	El algoritmo de refuerzo no es necesario para ANN, ya que ANN es lo suficientemente potente como para mapear la mayoría de las relaciones (no un alumno débil).	SVM también es un gran aprendiz y, por lo tanto, la aplicación del algoritmo de refuerzo es innecesario.	\checkmark	tienden a aplicar el método de hibridación basado en recuadros negros.
Descomposición de datos	\checkmark	\checkmark		
Conjunto neural no lineal	\checkmark	\checkmark	La flexibilidad del modelo basado en árboles permite utilizar múltiples técnicas de hibridación. Se cree que los estudios que incluyen el modelo basado en árboles en un conjunto neural no lineal estarán disponibles en el futuro.	

Tabla 4.2. Mapeo de técnicas de hibridación para modelos de inteligencia artificial (Chia et al., 2020)

 $\sqrt{(1)}$ La marca indica que la combinación entre modelos base y técnicas de hibridación está disponible.

4.4. Machine Learning para estimación de Evapotranspiración

4.4.1.Descripción

Se trata de un ejemplo de aplicación de técnicas de análisis de datos y modelos de Machine Learning básicos para la predicción de la evapotranspiración del cultivo. Son técnicas básicas, pero que sirven como punto de partida; además se trata de cómo obtener mediante *scrapping* datos que nos puedan ser interesantes. Se debe tener en cuenta la siguiente recomendación: Ejecución del archivo adjunto, mediante Jupyter Notebook, desde este se puede acceder a los demás.

[***Predicción-Evapotranspiracion***](Prediccion-Evapotranspiracion.ipynb)

En este caso el objetivo es ser capaz de dar una programación de riego adecuada a una zona geográfica concreta. Esta información es muy útil para los investigadores y agricultores, saber la cantidad exacta de agua que deben usar repercute en menos gastos por riego y maximización de las cosechas.

En concreto, el principal objetivo de este trabajo es obtener valores futuros, "predecir" el valor de la evapotranspiración, la cual se define como la pérdida de humedad de una superficie por evaporación directa junto con la pérdida de agua por transpiración de la vegetación. Este valor es importante para conocer las necesidades hídricas de las plantas y poder actuar de forma óptima.

Para ello vamos a utilizar variables climáticas obtenidas de estaciones meteorológicas y con ellas crear un programa capaz de predecir el valor deseado.

4.4.2.Código Utilizado

El código desarrollado en Python 3.7 y procesado a través de Jupyter es un entorno de desarrollo interactivo basado en la Web para computadoras portátiles. Es flexible, se puede configurar y organizar la interfaz de usuario para admitir una amplia gama de flujos de trabajo en ciencia de datos, informática científica y aprendizaje automático. Jupyter es extensible y modular, podemos escribir complementos que agreguen nuevos componentes y se integren con los existentes.

Jupyter surge en 2014; su creador fue Fernando Pérez (Medellín, Colombia), un físico desarrollador de *software* y promotor del *software* libre. Nace como una evolución del proyecto IPython, una potente consola mejorada para Python; sin embargo, Jupyter es mucho más ambicioso que IPython, se pretende construir una plataforma agnóstica del lenguaje que ofrezca a los científicos un conjunto de potentes herramientas para trabajar con datos, visualizarlos y poder compartir los resultados. Para obtener este código se debe instalar en la PC, Jupyter y los módulos "tensor flow" y "keras", que los encontramos en ANACONDA NAVIGATOR ===> Enviroments ===> base (root) ===> Tensor flow, Keras. Estos módulos complementarios permitirán correr el código sin inconvenientes.

El origen de su nombre corresponde a dos términos: (1) Es un homenaje a Galileo, al que se considera autor del primer "paper" científico de astronomía de la era moderna en 1610, en el cual describe sus observaciones astronómicas a través de un telescopio de las lunas de Júpiter. Galileo demostró que la Tierra orbita el Sol, de la misma manera que las lunas de Júpiter orbitan dicho planeta. (2) El nombre del proyecto "Jupyter" proviene de unir los 3 lenguajes de programación de núcleo; Julia, Python y R. (Figura 4.7.).

Asimismo, usaremos GitHub; que es una plataforma de desarrollo colaborativo para alojar proyectos utilizando el sistema de control de versiones Git. Se utiliza, principalmente, para la creación de código fuente de programas de ordenador. El *software* que opera GitHub fue escrito en Ruby on Rails. Desde enero de 2010, GitHub opera bajo el nombre de GitHub, Inc. El código utilizado en el desarrollo de este ejemplo, y que fue actualizado por el autor de este libro, corresponde a Pablo Saura, cuya cuenta es: HTTPS://GITHUB.COM/PABSAURA De esta cuenta obtenemos el desarrollo del código Python para evapotranspiración con Machine Learning, compuesto de la siguiente manera:

	Estructura de archivos y carpetas en Jupyter						
💭 Juj	🔁 jupyter						
Files	Running Clusters						
Select iter	ns to perform actions on them.						
0	MachineLearning-Evapotranspiracion						
C	D						
0 0] predicciones						
	MultiVariate time series forecasting.ipynb						
8	Prediccion-Evapotranspiracion.ipynb						
	Prediccion-EvapotranspiracionAnterior.ipynb						
0 0	AEMET.xisx						
o C] geckodriver.exe						
] geckodriver.log						
] layarada.csv						
• •] layaradaFull.csv						
	losnavalmoralos.csv						
6	losnavalmoralesFull.csv						
• •	PrediccionesAcumulado.txt						
• •	README.md						

Figura 4.8.

La ruta en la que trabajamos es: C:\Users\HP\ MachineLearning-Evapotranspiración, en esa carpeta también debe estar Jupyter. Los programas principales en Python con extensión *.ipynb, son (véase Apéndice B):

- MultiVariate time series forecasting.ipynb
- Prediccion-Evapotranspiracion.ipynb
- Prediccion-EvapotranspiracionAnterior.ipynb

4.4.3.Archivos de Datos

Se tienen archivos de datos originales utilizados en el proceso de entrenamiento y aprendizaje de los algoritmos, dichos archivos llevan extensión *.csv.

Los archivos con data de entrenamiento son: layarada.cvs y layaradaFull.cvs. Como ejemplo mostramos parte de la data contenida, según formato requerido por el código. Contiene 2259 filas de datos por 15 columnas que luego son depuradas eliminando las columnas de datos que no son necesarias.

	1. 3.	в		c		D	E	ŧ.	G		H	1		I K	L.	M	N	0
14	IdProvincia	IdEstacion	E	echa	Año:	Dia		Temp Me	dia Temp M	ax (STerr	p Minir	n Humes	ad M Hume	dad M Humed	lad M Radiació	n (NPrecipit	ación PePMon	EtPMan
2	45		4	1/01/2001		2001		1 9,36	11,89	7,64	1		86 95,9	77,7	3,77	6,8	3,26	0,99
3	45		4	2/01/2001		2001		2 7,78	10,22	6,11	1	78,8	92,8	62,15	6,92	7,2	3,56	1,37
4	-45		4	3/01/2001		2001		3 7,9	9,7	5,18	3	82,3	90,3	72,5	3,77	3,4	0,52	1,1
5	45		4	4/01/2001		2001		4 10,25	12,36	8,69		76,3	88,5	63,95	6,32		o	0 1,53
6	45		4	5/01/2001		2001		5 13,12	15,54	8,83	\$	85,7	94,9	77.9	3,75	4,6	1,52	1,31
7.	45		4	5/01/2001		2001		5 5,87	9,43	4,13	5	83,1	96,6	65,48	6,79	14,8	8,92	1,12
8	45	(4	7/01/2001		2001		7 4,17	7,91	1,33	3	76,5.	93,7	47,43	8,38		0	0 0,91
9	45		4	8/01/2001		2001		8 3,59	7,51	0,61	L	75,6	87,5	53,91	9,08		0	0.0,81
10	45		4	9/01/2001		2001		9 5,63	9,04	1,46	i i	79,8	96,6	52,19	1,76	0.8		0 1,26
11	45		4 3	10/01/2001		2001		10 10,02	11,76	8,3		87,8	95,7	77,3	2,55	2,4		0 0,92
12	45		4 :	11/01/2001		2001		11.8,16	10,56	6,31	1	88,3	93,6	79,2	2,5	8,6	4,6	0,82
13	45		4 3	12/01/2001		2001		12 6,15	7,11	5,38	8	93,9	97,4	82,6	1,89	4,6	1,52	0,57
14	45		4 3	13/01/2001		2001		13 7,79	12,27	4,39	1	80,5	97,4	51,34	7,96	0,2		0 0,87
15	45		4 :	14/01/2001		2001		14 7,78	11,55	3,93	£	69,2		82 50,81	8,4		0	0 1,02
15	45	0	4 3	15/01/2001		2001		15 5,54	7,78	4,38	3		85 95,6		74 3,61		0	0 0,73
17	-45		4 3	15/01/2001		2001		16 5,92	8,11	4,91		87,7	94,6	74,3	3,26	1,4		0.0,8
18	45		4 3	17/01/2001		2001		17 5,99	8,89	2,93	1		82 92,5	65,01	8,4	0,4		0 1.01
19	45		4 3	18/01/2001		2001		18 6,56	10,11	4,71		85,3	95,2	61,68	6,48	12,2	7,16	1,33
20	45		4 :	19/01/2001		2001		19 5,9	10.62	2,26	ř.	80,1	92,1	58,22	9,6		0	0 1,21

Figura 4.9. Archivo de datos originales layarada.csv

4.4.4.Código Python y Resultados

Para la predicción de la evapotranspiración usaremos un código escrito en Python 3.4. y administrado en Jupyter. El código lo mostramos en el Apéndice B.

La primera [1] caja del código se muestra a continuación.

```
import pandas as pd
import numpy as np
import matplotlib.pylab as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn import datasets, linear_model
from sklearn.metrics import mean_squared_error, r2_score
from sklearn import preprocessing
from math import sqrt
from datetime import datetime
%matplotlib inline
from matplotlib.pylab import rcParams
rcParams['figure.figsize'] = 15, 6
def standarizar df(df combinado):
   from sklearn import preprocessing
   std scale = preprocessing.StandardScaler().fit(df combinado)
   df std = std scale.transform(df combinado)
   return df std
```

En esta primera caja de programación Python se importa las librerías Pandas, NumPy, Matplotlib y Seaborn. Pandas es una biblioteca de *software* escrita como extensión de NumPy para la manipulación y análisis de datos para el lenguaje de programación Python. En particular, ofrece estructuras de datos y operaciones para manipular tablas numéricas y series temporales. NumPy es una extensión de Python que le agrega mayor soporte para vectores y matrices, constituyendo una biblioteca de funciones matemáticas de alto nivel para operar con esos vectores o matrices. Matplotlib es una biblioteca para la generación de gráficos a partir de datos contenidos en listas o "arrays" en el lenguaje de programación Python y su extensión matemática NumPy; proporciona una API y PyLab, diseñadas para recordar a la de MATLAB. Seaborn es una biblioteca de visualización de datos de Python basada en Matplotlib; y proporciona una interfaz de alto nivel para dibujar gráficos estadísticos atractivos e informativos.

Las demás cajas de programación independientes se listan en el Apéndice B.1, B.2 y B.3. La predicción de la evapotranspiración de referencia para el día 2018-04-11 es de 2.315 mm/día.

CAPÍTULO V Sensores Remotos y *ET*

CAPÍTULO V: SENSORES REMOTOS Y ET

5.1. Aspectos Generales

El 4 de octubre de 1957, la humanidad puso con éxito en el espacio exterior, por primera vez en su historia, un satélite llamado "Sputnik", lanzado por Rusia, entonces la Unión Soviética (URSS). La percepción remota es la técnica para obtener información de un objeto, o un proceso, por análisis de datos obtenidos mediante un instrumento que no está en contacto físico con los objetos. El tipo de datos susceptibles de ser obtenidos por percepción remota puede originarse en la distribución o cambios de diferentes fuerzas (gravedad, magnetismo), de ondas acústicas o de energía electromagnética. Todo cuerpo sometido a temperaturas superiores a 0 K (-273 °C) emite energía electromagnética. En este sentido la estrella Sol y el planeta Tierra se asemejan a cuerpos negros. El planeta no es un cuerpo negro perfecto y la intensidad de la energía emitida depende de las características del material que predomina en su superficie. El coeficiente de emisividad es una característica de la materia y ante una misma temperatura ambiente, dos cuerpos diferentes emiten distinta intensidad de energía.

En todos estos sensores se pueden incorporar filtros para seleccionar rangos espectrales de la energía que se desea registrar (bandas o canales espectrales).

De acuerdo a la plataforma y al sensor que se utilicen, los sistemas de sensores remotos se diferencian entre ellos por las siguientes características:

- **Resolución temporal:** Es la frecuencia de observaciones del sensor sobre un objeto. No depende del sensor, sino de la plataforma.

- Resolución espacial: Es el mínimo detalle espacial (pixel) que registra un sensor. Depende del sistema óptico del sensor y de la altitud de la plataforma.

- **Resolución espectral:** Es la cantidad de bandas y sus respectivos rangos espectrales con que se capta la energía electromagnética.

- **Resolución radiométrica:** Es la capacidad de un sensor para registrar pequeños cambios de energía. Se mide en cantidad de niveles de grises o de cuentas digitales.

Como se ha visto en los capítulos anteriores, los métodos directos de medición de la *ET* implican el uso de costosos y complejos instrumentos, por lo cual se han desarrollado numerosos métodos teóricos y empíricos para determinar dicha variable a partir de información meteorológica o sensores remotos.

Más de la mitad de la energía solar absorbida por las superficies terrestres se usa actualmente para evaporar agua. Se espera que el cambio climático intensifique el ciclo hidrológico y altere la evapotranspiración, con implicaciones para los servicios del ecosistema y la retroalimentación al clima regional y global (Jung et al., 2010). La teledetección tiene la capacidad de ayudar a la evolución adaptativa de las prácticas agrícolas para enfrentar este gran desafío, proporcionando información repetitiva sobre el estado de los cultivos a lo largo de la temporada a diferentes escalas y para diferentes actores (Weiss et al., 2020).

Es usual emplear los modelos Metric y Sebal, ambos modelos utilizan temperatura de superficie (T_s) para resolver el valor de la energía en la superficie terrestre. El balance de energía se define en términos de los flujos en la interfaz tierra-atmósfera, incluida la radiación neta de todas las ondas y los flujos de calor sensible, latente y subterráneo (Jaafar & Ahmad, 2020).

Un caso especial lo constituye la arquitectura del dosel de los viñedos y la estructura de hileras de estos; plantean desafíos únicos en el modelado de la división de radiación y el intercambio de energía entre el dosel de la vid y el área entre hileras. Las enredaderas a menudo se podan y manipulan para que estén fuertemente agrupadas, mientras que la cosecha mecánica requiere hileras anchas, a menudo con una relación entre la altura de la enredadera y el espaciamiento de la enredadera > 1. Kustas et al. (2019) estiman la radiación interceptada por el dosel y el efecto de esta intercepción debajo del dosel en el balance de energía superficial y evapotranspiración (*ET*).

Existen, actualmente, muchos trabajos de investigación respecto al uso de metodologías de sensores remotos y su interrelación con la torre Eddy Covariancia. Mediante comparaciones con datos de Eddy Covarianza, medidos en el campo, se evalúa las relaciones entre el índice de eficiencia de uso de la luz (LUE) y el índice de vegetación mejorado (EVI), el índice de vegetación de diferencia normalizada (NDVI) y la temperatura de la superficie de la tierra (LST) (Wu et al., 2015).

La evapotranspiración (ET) es un componente crítico de los equilibrios de agua y energía, y los productos de *ET* y métodos de estimación basados en teledetección han aumentado en los últimos años; varios aspectos de la teledetección de ET se vienen informando. Los principales temas de investigación actuales incluyen la comparación y el rendimiento. La evaluación de modelos de balance de energía de una y dos fuentes son ampliamente utilizados. Un nuevo modelo de doble fuente, suelo-ambiente de planta y evapotranspiración de teledetección (SPARSE), y un modelo basado en procesos (Monitor ETM), evalúan múltiples fuentes (p. ej. teledetección, reanálisis y modelo de superficie terrestre). Tales modelos se han desarrollado, o han mejorado, para proporcionar una ET diaria y continua en alta resolución espacial (escala de campo 30 m) al fusionar la emisión térmica avanzada transmitida por el espacio radiómetro de reflectancia (ASTER), el espectroradiómetro de imagen de resolución moderada (MODIS) y datos de Landsat, y, además, investigar las incertidumbres en las estimaciones de ET utilizando un conjunto de ET compuesto por 36 modelos de superficie terrestre (Wagle & Gowda, 2019).

Los efectos de las diferencias entre la *ET* sobre recursos hídricos y gestión de ecosistemas también fueron investigados. Estimaciones *ET* más precisas y una mejor comprensión de estos productos con sensores remotos puede ayudar a maximizar la productividad de los cultivos mientras se minimiza las pérdidas de agua y los costos de producción.

Los sensores remotos tienen la capacidad de adquirir instantáneamente firmas espectrales para grandes áreas, esta información permite la extracción de cobertura vegetal, emisividad, albedo, temperatura de la superficie y flujos de energía. El común denominador en muchos de los métodos para la estimación de evapotranspiración son la teoría de balance energético y la hipótesis de similaridad de Monin-Obokhov entre los modelos están: Sebal (Surface Energy Balance Algorithm for Land), TSEB (Two Sources Energy Balance) y SEBS (Surface Energy Balance System); asimismo, Metric (Mapping EvapoTranspiration at high Resolution with Intelized Calibration).

5.2. Satélites y Drones

La primera generación de plataformas para instrumentos que generan datos de detección remota desde la superficie de la Tierra comprendía aviones pilotos y la segunda generación consistía en satélites en órbita terrestre. Los desarrollos recientes en la tecnología de drones (UAV, vehículos aéreos no tripulados, etc.) han abierto nuevas e importantes posibilidades en el campo de la teledetección para que los drones puedan considerarse como la tercera generación de plataformas que generan datos de la superficie detectados de forma remota (Milas et al., 2018).

Respecto a los drones (UAV), son tangibles las aplicaciones que se pueden realizar en la actualidad en las actividades o labores agrícolas, estimación de la evapotranspiración y contenido de humedad del suelo, nutrientes en los cultivos y rendimiento de los cultivos (Pino-Vargas, 2019).

La teledetección es la técnica mediante la cual se pueden obtener imágenes de una superficie de forma aérea e incluye todo el trabajo posterior de tratamiento de esas imágenes, así como su procesado e interpretación. De forma análoga, los satélites y drones pueden adquirir imágenes radiométricas para diferentes usos, el caso de la evapotranspiración es uno de ellos.

Asi los drones son vehículos aéreos tripulados de forma remota capaces de portar distintos sensores de medición (termográfica, multiespectral, óptica); por el contrario, los sensores embarcados en plataformas satelitales pueden incluir sensores ópticos y multiespectrales y, aunque también existen sensores térmicos y radar su resolución no es adecuada para algunas aplicaciones.

5.3. Drones versus Satélites

El mundo ha recorrido un largo camino desde el Sputnik (primer satélite lanzado al espacio). Hemos vivido en la era de los satélites durante más de medio siglo, y las formas en que esos ojos en el cielo están ayudando a la vida cotidiana de las personas son tan importantes como inconmensurables. Las tareas asociadas con todo aspecto de la vida humana, desde el monitoreo del clima hasta la vigilancia, se respaldan con datos recopilados por satélite, y el alcance de la información que los satélites pueden proporcionar es increíble (Barnes, 2018).

Los drones han demostrado ser una alternativa confiable cuando se trata de recopilar información que de otro modo proporcionarían los satélites de una manera más rápida y económica; sin embargo, por lo general, no se trata de

"uno u otro" cuando se requiere decidir si es mejor utilizar datos de drones o satélites, porque las plataformas están recopilando información de maneras muy diferentes y a escalas totalmente disímiles. Estas distinciones han creado propuestas de valor completamente diferentes para cada enfoque.

En última instancia, si tiene sentido usar uno u otro, o ambos, es una cuestión de las tareas que deben realizarse y los datos específicos que deben obtenerse. Hay casos en que un avión no tripulado no funcionará tan bien como un satélite, pero también hay muchos casos en los que no sería recomendable utilizar un avión no tripulado si hay datos de satélite disponibles. Estas distinciones nos han permitido llegar a algunas reglas generales sobre dónde y cuándo tiene sentido usar una, o además de la otra **(Figura 5.1.)**.

Figura 5.1. Satélite versus drones (Barnes, 2018)

Usamos satélite cuando se necesita una vista "macro" del terreno; cuando se debe recopilar, rápidamente, una gran cantidad de datos. Los satélites, por ejemplo, se aplican bien en la agricultura, pero no ofrecen el tipo de detalles finos que se pueden obtener con drones. Usamos drones cuando una toma "micro" de la tierra es apropiada y la ampliación no importa. En el debate satélite versus drones, usar el dron para realizar más verificaciones puntuales, en lugar de recopilar una gran cantidad de datos, es probablemente el caso de uso ideal.

La capacidad de usar nuevas herramientas y datos más específicos, según sea necesario, ha hecho que los profesionales piensen qué tipo de información necesitan para un proyecto dado de una manera totalmente nueva. El fácil acceso a estas herramientas y enfoques ha cambiado las propuestas de valor para usar una solución u otra, pero ese cambio también ha estimulado los esfuerzos para considerar dónde y cómo estos enfoques se complementan entre sí. Una cosa está clara: los satélites continuarán impactando las innovaciones de la tecnología de drones y viceversa.

5.4. Uso de Sensores Remotos

Experimentalmente, el cálculo de la evapotranspiración se realiza con una precisión razonable usando lisímetros de pesada, técnicas de Eddy Correlation y relación de Bowen. Estos métodos son limitados, ya que proporcionan valores puntuales de evapotranspiración para un lugar en específico y no a una escala regional. La aplicación de una estimación de la evapotranspiración mediante el uso de mediciones de satélites puede llegar a superar estas limitaciones.

La radiación solar neta sobre la superficie terrestre se divide en sensible, latente y flujos de calor del suelo. El calor latente es absorbido por un cuerpo, como plantas, o un sistema termodinámico para convertir agua líquida / sólida en vapor de agua. El agua evaporada se llama evapotranspiración (ET) y viene a ser una suma de la evaporación del suelo, la evaporación de la vegetación y la transpiración de la vegetación; este último es un proceso que se combina con la absorción de carbono a través de la fotosíntesis; por lo tanto, tierra, energía superficial, agua y los flujos de carbono están interconectados a través de los procesos acoplados de la superficie terrestre, en particular el del proceso de ET. Mediciones precisas y estimaciones de energías y flujos de agua (flujos sensibles, latentes y de calor del suelo) son críticos para cuantificar los valores de energía superficial y de agua, predicen el clima a corto y largo plazo (Pielke et al., 1998), diagnostican el cambio climático y evalúan mejoras de la física de los modelos climáticos (Bony et al., 2006).

La teledetección (*Remote Sensing*, RS), especialmente desde satélites en órbita polar, proporciona, relativamente, mediciones frecuentes y espacialmente contiguas para el monitoreo global de la superficie, variables biofísicas que afectan a la *ET*, incluyendo albedo, tipo de vegetación y densidad. El mapeo de *ET* basado en RS es una forma rentable de estimar y controlar este flujo. Actualmente, los satélites no pueden proporcionar observaciones temporales continuas de espectro reflectancia de la superficie de la Tierra.

El balance energético global considera los flujos de energía dentro del sistema climático y sus intercambios con el espacio ultraterrestre. En muchas publicaciones y libros de texto, los equilibrios energéticos medios globales son destacados a través de diagramas icónicos; sin embargo, los números reales que representan la energía de los flujos en las diversas imágenes exhiben fluctuaciones considerables (Liou & Kar, 2014). Esto indica una gran incertidumbre en nuestra comprensión actual del sistema climático, inherente a la evaluación de algunos de estos aspectos fundamentales; la energía fluye como se muestra en la Figura 5.2.

5.5. Mapeo de ET Basado en Sensores Remotos

Aunque existen muchos algoritmos existentes que pueden usarse para estimar uno o todos los componentes de los flujos de energía de superficieagua, sus aplicaciones están limitadas por la disponibilidad de datos de entrada y parámetros del modelo y / o supuestos inherentes del modelo.

La Tabla 5.1. resume los supuestos, requisitos y limitaciones de estos métodos. En resumen, la implementación global de estos algoritmos/modelos existentes está restringida por una o más de las siguientes limitaciones/desafíos: (1) Altos requerimientos de datos meteorológicos; (2) susceptibilidad a malas condiciones climáticas, como cielo nublado; y (3) requisito de escalar valores instantáneos a valores promedio de tiempo con supuestos que no siempre son válidos.

 Tabla 5.1.

 Resumen de los principales métodos de mapeo de ET basados en satélites existentes (Wild et al. 2013)

Model	Advantages	Assumptions/Limitations	ET Partition
Penman- Monteith methods	Process-based, temporally continuous coverage, flexible for time step, no or low requirements for surface temperature	High requirement for meteorological forcing; require parameterization of canopy conductance	Soil, vegetation, and/ or open water components
Surface energy balance methods	Low requirement for meteorological forcing; potentially completely driven by satellite data	Only available for clear-sky conditions; high sensitivity to errors of surface temperature; assuming constant evaporative fraction to extrapolate the instantaneous values	Soil and vegetation components
Priestly- Taylor method	Simple: no calibration required; moderate requirement for meteorological forcing	Many simplifications of the physical processes; requires ground heat flux as an input or assumes that it is negligible; it was applied on the monthly timescale	Soil and vegetation components
MEP model	Low requirement for meteorological forcing	Requires continuous land surface temperature to produce continuous record	Soil and vegetation components
Other empirical models	Simple; most models have low requirement for forcing data	Requires calibration; oversimplification of physical processes; subject to weather condition if land surface temperature is required	Usually do not partition ET into soil and vegetation components

Summary of Existing Major Satellite-Based ET Mapping Methods

5.6. Extracción de Funciones y Clasificación para el Medio Ambiente

Los seres humanos que buscan detectar y extraer información de las imágenes se remontan a la época en que la primera imagen fotográfica se adquirió a mediados del siglo XIX. Posteriormente, los avances en fotogrametría, la invención del avión, mejoras instrumentales y técnicas, el advenimiento de las imágenes digitales y las capacidades de la electrónica en el procesamiento e interés en extraer información de imágenes han sido fundamentales para la toma de decisiones (Wolf et al., 2014; Escalante, 2012).

Las diferentes estrategias de aprendizaje son: Aprendizaje supervisado; aprendizaje no supervisado y aprendizaje semisupervisado. Además, se pueden introducir parámetros para medir el proceso y se pueden utilizar para evaluar el rendimiento de los métodos de extracción de características, así como las perspectivas de extracción de características **(Figura 5.3.)**.

Debido a su eficacia en la manipulación de grandes cantidades de información incrustada en las imágenes de detección remota, la extracción de características ha sido considerada durante mucho tiempo el mejor elemento de la detección remota; sin embargo, aún es difícil desarrollar una definición unificada para la extracción de características, y se pueden encontrar muchas variaciones en la literatura.

Según Liu et al. (2020), la detección de objetos, uno de los problemas fundamentales y desafiantes en la visión por computadora, busca localizar instancias de objetos de una gran cantidad de categorías predefinidas en imágenes naturales. Las técnicas de aprendizaje profundo han surgido como una estrategia poderosa para aprender representaciones de características directamente de los datos y han llevado a avances notables en el campo de la detección de objetos genéricos.

La detección de características del terreno es una tarea fundamental en el análisis del terreno y la interpretación de la escena del paisaje. Descubrir dónde se encuentra una característica específica; es decir, una duna de arena, un cráter, etc., y cómo evoluciona con el tiempo es esencial para comprender los procesos de los accidentes geográficos y sus impactos en el medio ambiente, el ecosistema y la población humana. Los enfoques tradicionales basados en la inducción se ven desafiados por su ineficiencia para generalizar características del terreno diversas y complejas, así como por su rendimiento para el procesamiento escalable de los datos geoespaciales masivos disponibles (Liu et al., 2020).

Según Liu et al. (2020), se presenta un nuevo enfoque de aprendizaje profundo (DL) para admitir la detección automática de características del terreno a partir de imágenes detectadas de forma remota. La novedad radica en los siguientes aspectos: (1) Una base de datos de características del terreno que contiene 12 000 imágenes de detección remota (1000 imágenes originales y 11 000 imágenes derivadas del aumento de datos) que admite la implementación de modelos basados en datos y nuevos descubrimientos; (2) una red de detección de objetos basada en DL, potenciada por aprendizaje conjunto y redes neuronales convolucionales profundas y más profundas para lograr una detección de objetos de alta precisión; y (3) afinar las características y comportamientos del modelo para identificar la mejor combinación de hiperparámetros y otros factores de red.

Se espera que la introducción de DL en aplicaciones geoespaciales contribuya significativamente al análisis inteligente del terreno, la interpretación de la escena del paisaje y la maduración de la ciencia de datos espaciales.

5.7. Uso de Imágenes Satelitales, Modelo de Balance de Energía de Superficie Simplificado (SSEBop)

5.7.1.Descripción

Se trata de calcular la evapotranspiración (*ET*) como la combinación de la transpiración de la vegetación y la evaporación desde el suelo. La *ET* real (ET_a) se obtiene utilizando el modelo de balance de energía de superficie simplificado (SSEBop) (G.B. Senay et al., 2011) para un periodo determinado. La configuración de SSEBop es basada en el enfoque de balance de energía de superficie simplificado (SSEB) (Senay et al., 2013) con parametrización única para aplicaciones operativas. Combina fracciones de *ET* generadas de imágenes térmicas Modis de detección

remota, adquiridas cada 8 días, con referencia de *ET*, utilizando un enfoque de índice térmico. La característica única de la parametrización SSEBop es que utiliza condiciones de límite predefinidas, estacionalmente dinámicas, que son exclusivas de cada pixel para puntos de referencia "caliente / seco" y "frío / húmedo". La formulación original de SSEB se basa en el calor y principios de pixeles fríos de Sebal (Bastiaanssen et al., 1998) y Metric (Richard G. Allen et al., 2007).

5.7.2.OpenET - SSEBop

Es un repositorio que proporciona la implementación basada en API Python de Google Earth Engine del modelo SSEBop *ET*. El modelo de balance de energía superficial simplificado operacional (SSEBop) calcula la evapotranspiración real total diaria (*ET*_a) utilizando la temperatura de la superficie terrestre (*T*_s), la temperatura máxima del aire (*T*_a) y la *ET* de referencia (*ET*_r). El modelo SSEBop no resuelve todos los términos del balance de energía explícitamente; más bien, define las condiciones limitantes basadas en los principios de equilibrio neto de radiación en cielo despejado. Este enfoque define conjuntos únicos de valores límite "caliente / seco" y "frío / húmedo" para cada pixel y está diseñado para reducir los errores del operador del modelo al estimar la *ET* de forma rutinaria **(Figura 5.4.)**.

Figura 5.4. Diagrama de arquitectura básica del modelo SSEBop en Earth Engine (Bastiaanssen et al., 1998)

5.7.3.Colecciones de Entrada

SSEBop *ET* actualmente solo puede calcular para la imagen TOA de Landsat Collection 1 de las siguientes colecciones de imágenes de Earth Engine:

LANDSAT / LC08 / C01 / T1_TOA o LANDSAT / LC08 / C01 / T1_RT_TOA LANDSAT / LE07 / C01 / T1_TOA o LANDSAT / LE07 / C01 / T1_RT_TOA LANDSAT / LT05 / C01 / T1_TOA

Tengamos en cuenta que los valores de T_{corr} específicos de la escena solo se han calculado para imágenes Landsat que cubren los Estados Unidos. Las estimaciones de SSEBop para imágenes Landsat fuera de CONUS utilizarán el valor predeterminado del factor C de 0.978.

En el Apéndice C se puede observar la codificación completa de este proceso.

5.7.4.Diseño del Modelo

El componente principal del modelo SSEBop es la clase Image (). La clase de imagen se puede utilizar para calcular una sola fracción de imagen $ET(ET_j)$ de referencia a partir de una sola imagen de entrada. La clase de imagen debe ser creada a partir de Earth Engine Landsat utilizando los métodos específicos de la colección. Las colecciones de imágenes de ET se pueden construir calculando ET en una función que se asigna a una colección de imágenes de entrada.

Imagen de entrada TOA de Landsat Collection 1.

Para crear una instancia de la clase para una imagen TOA de Landsat Collection 1 use el método Image.from_landsat_c1_toa ().

La imagen Landsat de entrada debe tener las siguientes bandas y propiedades:

SPACECRAFT_ID	Nombres de banda
LANDSAT_5	B1, B2, B3, B4, B5, B7, B6, BQA
LANDSAT_7	B1, B2, B3, B4, B5, B7, B6_VCID_1, BQA
LANDSAT_8	B2, B3, B4, B5, B6, B7, B10, BQA

EVAPORACIÓN Y EVAPOTRANSPIRACIÓN EN HIDROLOGÍA MEDICIÓN, ESTIMACIÓN Y APLICACIONES

Propiedad	Descripción
sistema: índice	 ID de escena Landsat Debe estar en formato Earth Engine (p. Ej. LC08_044033_20170716) Se usa para buscar el factor c específico de la escena
sistema: time_start	Fecha y hora de la imagen en milisegundos desde 1970
SPACECRAFT_ID	 Se usa para determinar qué tipo de Landsat Debe ser: LANDSAT_5, LANDSAT_7 o LANDSAT_8

5.7.5.Modelo de Salida

La salida principal del modelo SSEBop es la fracción de referencia ET (ET_f). La ET real (ET_a) se puede calcular multiplicando la imagen ET_f basada en Landsat con la ET de referencia; por ejemplo, ET_r de GRIDMET. Como ejemplo tenemos:

importar openet.ssebop como ssebop

```
landsat_img = ee.Image ( ' LANDSAT / LC08 / C01 / T1_RT_TOA / LC08_044033_20170716 ' )
et_fraction = ssebop.Image.from_landsat_c1_toa (landsat_img) .et_fraction
et_reference = ee.Image ( ' IDAHO_EPSCOR / GRIDMET / 20170716 ' ) .select ( ' eto ' )
et_actual = et_fraction.multiply (et_reference)
```

5.7.6.Imagen de Entrada Personalizada

Las imágenes SSEBop también se pueden construir manualmente instanciando la clase con un ee.Image con las siguientes bandas: 'lst' (temperatura de la superficie terrestre [K]) y 'ndvi' (índice de vegetación de diferencia normalizada). La imagen de entrada debe tener las propiedades 'system: index' y 'system: time_start' (descritas anteriormente).

```
importar openet.ssebop como ssebop
input_img = ee.Image ([ee.Image (lst), ee.Image (ndvi)]) \
    .rename ([ ' lst ', ' ndvi ' ]) \
    .conjunto({
        ' system: index ': ' LC08_044033_20170716 ',
        ' system: time_start ': ee.Date.fromYMD ( 2017 , 7 , 16 ) .millis ()})
et fraction = ssebop.Image (input img) .et fraction
```

5.7.7.Conjuntos de Datos Auxiliares

- Temperatura diaria máxima del aire (T_{max}). La temperatura máxima diaria del aire es esencial para establecer el límite de *ET* máxima (límite de frío) como explica Senay (2017).

- *Temperatura de la superficie terrestre*. La temperatura de la superficie terrestre (LST) se calcula, actualmente, con el enfoque SSEBop a partir de imágenes de la parte superior de la atmósfera del Landsat al incluir pasos de calibración comúnmente utilizados y técnicas de corrección atmosférica. Estos incluyen cálculos para los siguientes aspectos: (1) Conversión de radiancia espectral a la temperatura de brillo en el sensor; (2) absorción atmosférica y valor de reemisión, y (3) emisividad superficial.

El modelo SSEBop *ET* utiliza *dT* como una diferencia de temperatura predefinida entre Thot y Tcold para cada pixel. En la formulación SSEBop los límites de calor y frío se definen en el mismo pixel; por lo tanto, *dT*, en realidad, representa la diferencia de temperatura vertical entre la temperatura de la superficie de una condición teórica desnuda / seca de un pixel dado y la temperatura del aire al nivel del dosel del mismo pixel como explica Senay (2013). La entrada *dT* se calcula en condiciones de cielo promedio y se supone que no cambia de año en año, pero es única para cada día y ubicación.

- Elevación. El conjunto de datos de elevación predeterminado es el activo de imagen global USGS SRTM. El parámetro de elevación aceptará cualquier imagen de Earth Engine.

- T_{corr} (factor C). Para corresponder la temperatura máxima del aire con condiciones ambientales limitantes (frío / húmedo), el modelo SSEBop utiliza un coeficiente de corrección (factor C) calculado exclusivamente para cada escena Landsat a partir de pixeles bien regados / vegetados. Este componente de corrección de temperatura se basa en una relación de $T_{máx}$ y temperatura de la superficie terrestre (LST) que ha pasado por varias condiciones, como los límites de NDVI.

El valor T_{corr} se lee de colecciones de características/imágenes de Earth Engine precalculadas, basadas en la identificación de la escena Landsat (del sistema: propiedad de índice). Si el ID de escena de Landsat objetivo no se encuentra en la colección T_{corr} se utiliza un valor mensual promedio. Si no se han calculado los valores mensuales medios para la ruta/fila objetivo, se utilizará un valor predeterminado de 0.978.

Data	Parameters	Result
NDVI	0.7 <= NDVI <= 1.0	Healthy "greenest" vegetation
T _s	> 270 K	Clouds/snow removed
Fmask	>= 50 clear pixels	Minimum statistical sample
Taiff	$0 \le (T_a - T_s) \le 15 \text{ K}$	Unrealistic T_a - T_s differences removed
T _{corr}	T_s/T_a	Pixel-based preliminary <i>c</i> factor over well-vegetated surfaces, meeting above criteria
c factor	Mean $T_{\rm corr}$ minus 2 STD	c factor based on coldest, greenest vegetation

El T_{corr} es una función del conjunto de datos de temperatura máxima del aire, por lo que se han generado colecciones de T_{corr} separadas para cada uno de los siguientes conjuntos de datos de temperatura del aire: CIMIS, DAYMET, GRIDMET, TopoWX. La fuente de datos de la colección T_{corr} debe coincidir con la fuente de datos de la temperatura del aire. Las colecciones de T_{corr} se actualizaron por última vez hasta 2018, pero eventualmente se actualizarán diariamente.

5.8. Uso de Imágenes de Drone, Determinación del Índice de Estrés Hídrico del Cultivo (CWSI) en Olivo

5.8.1.Descripción

El presente caso corresponde a un proyecto de investigación en la irrigación "La Yarada", en un campo de olivos, llevado a cabo durante el año 2019 y parte de 2020. El estado de humedad del cultivo de olivo es la variable de mayor interés de estudio en los sistemas productivos; es el factor determinante para el rendimiento y la calidad del producto final. La variabilidad de la humedad está en relación con el cultivo en producción, las condiciones meteorológicas, las variables fisicoquímicas del suelo y el recurso hídrico. La estimación de la humedad del suelo usando el estrés hídrico permite adaptar el sistema de riego de acuerdo a su necesidad. El objetivo es determinar el grado de humedad vía estrés hídrico a partir de modelos de monitoreo geoespacial utilizando imágenes de sensores multiespectrales y térmicos de corto alcance usando un vehículo aéreo no tripulado (VANT). Las técnicas geoespaciales, el índice diferencial de vegetación normalizado (NDVI) y el índice de estrés hídrico del cultivo (CWSI) conjuntamente con las mediciones en campo de temperatura foliar y conductancia estomática, permiten obtener correlaciones importantes para el estado hídrico del cultivo con el objetivo de programar riego en tiempo real.

Se buscan correlaciones importantes entre mediciones. (a) *NDVI* (instrumento campo) medido versus *NDVI* (VANT) estimado. (b) *LAI* versus *CWSI*. (c) Temperatura foliar (Porómetro) versus *canopy* medido con cámara térmica del VANT. (d) Temperatura foliar versus *CWSI*. (e) Temperatura foliar versus conductancia estomática. (f) Estrés hídrico versus conductancia estomática.

5.8.2. Procesamiento de Imágenes Aéreas

Las imágenes fueron capturadas en formato R-jpg con valores emitidos desde el objetivo; se discretizaron dichas imágenes para su procesamiento en el programa Pix4D, eliminando las fotos que no estaban contempladas en el plan de vuelo, puesto que el VANT captura fotos desde que inicia su vuelo. En el programa Pix4D se cargaron las imágenes verificando su superposición, generándose: (1) Mosaico de temperatura (TIR); (2) mosaico de color visible (*red, green, red edge, nir*); (3) modelo digital de elevación (DEM). Estos mosaicos generan un formato de 32 bits con extensión "TIF" procediéndose a georreferenciar los ortomosaicos.

5.8.3.Índice de Estrés Hídrico de Cultivo (CWSI)

Para determinar el *CWSI* se requiere extraer los pixeles de temperatura de los árboles (*canopy*), cada pixel contiene un valor de temperatura excluyendo el suelo u otros materiales, la inclusión de temperatura de otro material puede significar un error en la determinación del *CWSI*; sin embargo, algunos pixeles extraídos del *canopy* pueden generar un enmascaramiento (*edge pixel*) que representa la mezcla de los valores de temperatura del suelo y *canopy*, los cuales tienen valores de temperatura más elevados que la temperatura de los pixeles del *canopy*. Otro factor que puede afectar la extracción es la sombra producida por los árboles de
olivo, por eso es recomendable programar el vuelo en periodos de medio día.

Para la extracción de los valores del *canopy* se realizó un enmascaramiento de todos los árboles de olivo, que permitió la obtención de la temperatura.

La determinación del *CWSI* requiere la temperatura del *canopy* y es una herramienta potencial para la programación de riego. Idso et al. (1981) propusieron una metodología para la determinación del déficit hídrico; luego, Jackson et al. (1981) presentaron una alternativa para el uso de imágenes térmicas, proponiendo, además, el concepto CWSI, basándose en la diferencia entre la temperatura del *canopy* (T_c) del cultivo con la temperatura del aire (T_a), normalizado para la demanda de evaporación según lo determinado por medio de un límite inferior (el *canopy* transpira en su ratio potencial) y un límite superior (el *canopy* no transpira) (Khanal et al., 2017).

$$CWSI = \frac{(T_c - T_a) - (T_c - T_a)_{LL}}{(T_c - T_a)_{UL} - (T_c - T_a)_{LL}}$$

Donde *UL* y *LL* son los límites superior e inferior, respectivamente. En la actualidad existen varias metodologías para determinar el *CWSI*, y varían según el enfoque utilizado para determinar *UL* y *LL* (Agam et al., 2013; Khanal et al., 2017).

Se han realizado estudios sobre estimación del *CWSI* mediante mediciones térmicas adquiridas a través de termómetros infrarrojos manuales, esta metodología fue propuesta por Idso et al. (1981) y Jackson et al. (1981). Donde dT es la medida de la diferencia entre la temperatura del *canopy* de la planta y la temperatura del aire $(T_c - T_a)$, dT_{LL} y dT_{UL} son la diferencia $(T_c - T_a)$ en el límite inferior y superior, respectivamente.

$$CWSI = \frac{(dT - dT_{LL})}{(dT_{UL} - dT_{LL})}$$

Para la determinación del *CWSI* se utiliza la ecuación anterior sobre la información de imágenes satelitales. Usando la metodología del algoritmo Sebal, propuesto por Bastiaanssen et al. (1998) y

remplazando T_{Cold} y T_{Hot} obtenidas de la imagen satelital, obtenemos la siguiente ecuación.

$$CWSI = \frac{(T_s - T_{Cold})}{(T_{Hot} - T_{Cold})}$$

En la cual, T_s es la temperatura del *canopy*, T_{cold} es la temperatura de un pixel de una zona de buena irrigación que es totalmente cubierta por vegetación (pixel frío), y T_{Hot} es la temperatura de un pixel de una zona con cubierta vegetal que no tenga buena irrigación (pixel caliente) (Veysi et al., 2017).

5.8.4.Índice de Vegetación de Diferencia Normalizada (NDVI)

El índice de vegetación de diferencia normalizada conocido como NDVI, por sus siglas en inglés, es un índice usado para estimar la cantidad, calidad y desarrollo de la vegetación con base a la medición por medio de sensores remotos instalados, comúnmente, desde una plataforma espacial o VANT (Bhandari et al., 2012; Houborg & McCabe, 2018). Para el cultivo de olivo es posible encontrar los pixeles que son cubiertos totalmente con vegetación, basados en la determinación del *NDVI*; que debe cumplir con *NDVI* >0.5 en zonas totalmente cubiertas por vegetación (Aboutalebi et al., 2018; Karnieli et al., 2010), según la siguiente ecuación.

 $NDVI = \frac{(NIR - RED)}{(NIR + RED)}$

Las variables *RED* y *NIR* están definidas por las medidas de reflexión espectral adquiridas en las regiones del rojo e infrarrojo cercano, respectivamente (RED, Espectroscopia de Reflectancia de la parte Roja Visible, y NIR, Espectroscopia de Reflectancia en el Infrarrojo Cercano). Estas reflexiones espectrales son cocientes de la radiación reflejada sobre la radiación entrante en cada banda espectral individual; por tanto, estos toman valores entre un rango de 0.0 a 1.0 y el *NDVI* varía entre -1.0 y +1.0.

5.8.5.Resultados Obtenidos

Las mediciones fueron realizadas en 30 árboles de olivo seleccionados en el área de estudio en vuelo realizado a las 12:00 GMT el 07 de agosto de 2019. De esta manera, usando *software* GIS y la ecuación del

CWSI, se obtuvo un mapa normalizado del *CWSI* para la parcela de olivo **(Figura 5.5.)**, donde se pueden diferenciar zonas en estrés hídrico con valores próximos a 1 y bien regadas próximos a 0.

Figura 5.5. Mosaico de temperaturas (°C) obtenidas con cámara térmica (Fuente: elaboración propia)

En la Figura 5.6. se muestra el mosaico *NDVI*, este índice puede usarse en tiempo real, además, permite vigilar sequías, predecir producción agrícola, predecir zonas de incendios y áreas de desertificación. Es el índice más utilizado para el seguimiento global de la vegetación, permite compensar cambios en las condiciones de iluminación, la pendiente de la superficie sobre la cual se asientan las plantas, exposiciones y otros factores externos. Define valores de -1.0 a +1.0; los negativos representan superficies húmedas y los positivos cercanos a cero, suelo descubierto. En este trabajo se obtuvo valores entre 0.55 y 0.85.

Figura 5.6. Mosaico NDVI obtenido en vuelo de dron (Fuente: elaboración propia)

En la Figura 5.7. se muestra el mosaico *CWSI*, los valores encontrados para este índice en la parcela de olivo tienden a 0, indicativo de buenas condiciones de humedad en el suelo al momento del vuelo VANT.

Figura 5.7. Mosaico CWSI obtenido en vuelo de dron (Fuente: elaboración propia)

REFERENCIAS

- Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., & Arshad, H. (2018). State-of-the-art in artificial neural network applications: A survey. *Heliyon*, 4(11). https://doi.org/10.1016/j.heliyon.2018.e00938
- Aboutalebi, M., Torres-Rua, A. F., McKee, M., Kustas, W., Nieto, H., & Coopmans, C. (2018). Behavior of vegetation/soil indices in shaded and sunlit pixels and evaluation of different shadow compensation methods using UAV high-resolution imagery over vineyards. En J. A. Thomasson, M. McKee, & R. J. Moorhead (Eds.), *Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping III* (p. 6). SPIE. https://doi.org/10.1117/12.2305883
- Adams, A., & Sterling, L. (1992). Ai '92. En *AI '92* (Vol. 1-0, pp. 1-410). WORLD SCIENTIFIC. https://doi.org/10.1142/9789814536271
- Adarsh, S., Sanah, S., Murshida, K. K., & Nooramol, P. (2018). Scale dependent prediction of reference evapotranspiration based on Multi-Variate Empirical mode decomposition. *Ain Shams Engineering Journal*, 9(4), 1839-1848. https://doi.org/10.1016/j.asej.2016.10.014
- Agam, N., Cohen, Y., Berni, J. A. J., Alchanatis, V., Kool, D., Dag, A., Yermiyahu, U., & Ben-Gal, A. (2013). An insight to the performance of crop water stress index for olive trees. *Agricultural Water Management*, *118*, 79-86. https://doi.org/10.1016/j.agwat.2012.12.004
- Allawi, M. F., Binti Othman, F., Afan, H. A., Ahmed, A. N., Hossain, M. S., Fai, C. M., & El-Shafie, A. (2019). Reservoir Evaporation Prediction Modeling Based on Artificial Intelligence Methods. *Water*.

http://agris.fao.org/agris-search/search.do?recordID=US201900444132

- Allen, R.G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration—Guidelines for computing crop water requirements [Methodology Reference]. European Environment Agency. https://www.eea.europa.eu/data-and-maps/indicators/water-retention-3/allen-et-al-1998
- Allen, Richard G. (2006). Evapotranspiración del cultivo: Guías para la determinación de los requerimientos de agua de los cultivos. Organización de las Naciones Unidas para la Agricultura y la Alimentación.
- Allen, Richard G., Tasumi, M., & Trezza, R. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model. *Journal of Irrigation and Drainage Engineering*, 133(4), 380-394. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380)

- Aubinet, M., Grelle, A., Ibrom, A., Rannik, Ü., Moncrieff, J., Foken, T., Kowalski, A. S., Martin, P. H., Berbigier, P., Bernhofer, Ch., Clement, R., Elbers, J., Granier, A., Grünwald, T., Morgenstern, K., Pilegaard, K., Rebmann, C., Snijders, W., Valentini, R., & Vesala, T. (1999). Estimates of the Annual Net Carbon and Water Exchange of Forests: The EUROFLUX Methodology. En A. H. Fitter & D. G. Raffaelli (Eds.), *Advances in Ecological Research* (Vol. 30, pp. 113-175). Academic Press. https://doi.org/10.1016/S0065-2504(08)60018-5
- Barnes, J. (2018). Drones vs satélites: ¿competitivos o complementarios? El | Noticias comerciales de UAV.

https://www.commercialuavnews.com/infrastructure/drones-vs-satellites-competitive-complimentary

- Barr, A. G., Morgenstern, K., Black, T. A., McCaughey, H., & Nesic, Z. (2006). Surface energy balance closure by the eddy-covariance method above three boreal forest stands and implications for the measurement of the CO2 flux. *Agricultural and Forest Meteorology The Fluxnet-Canada Research Network: Influence of Climate and Disturbance on Carbon Cycling in Forests and Peatlands, 140, 322-337.* https://doi.org/10.1016/j.agrformet.2006.08.007
- Bastiaanssen, W. G. M. (2000). SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. *Journal of Hydrology*, 229, 87-100. https://doi.org/10.1016/S0022-1694(99)00202-4
- Bastiaanssen, W. G. M., Menenti, M., Feddes, R. A., & Holtslag, A. A. M. (1998). A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. *Journal of Hydrology*, *212-213*, 198-212. https://doi.org/10.1016/S0022-1694(98)00253-4
- Bhandari, A. K., Kumar, A., & Singh, G. K. (2012). Feature Extraction using Normalized Difference Vegetation Index (NDVI): A Case Study of Jabalpur City. *Procedia Technology*, *6*, 612-621. https://doi.org/10.1016/j.protcy.2012.10.074
- Bony, S., Colman, R., Kattsov, V. M., Allan, R. P., Bretherton, C. S., Dufresne, J.-L., Hall, A., Hallegatte, S., Holland, M. M., Ingram, W., Randall, D. A., Soden, B. J., Tselioudis, G., & Webb, M. J. (2006). How Well Do We Understand and Evaluate Climate Change Feedback Processes? *Journal of Climate*, 19(15), 3445-3482. https://doi.org/10.1175/JCLI3819.1
- Bowen, I. S. (1926). The Ratio of Heat Losses by Conduction and by Evaporation from any Water Surface. *Physical Review*, 27(6), 779-787. https://doi.org/10.1103/PhysRev.27.779
- Breiman, L. (1996). Bagging predictors. *Machine Learning*, 24(2), 123-140. https://doi.org/10.1007/BF00058655
- Brutsaert, W. (1982). Evaporación a la atmósfera, Texto original: Teoría, Historia y *Aplicaciones*. Springer Netherlands. https://doi.org/10.1007/978-94-017-1497-6
- **Chandler, D.** (2019). *Experiments reveal the physics of evaporation*. MIT News. http://news.mit.edu/2019/physics-how-evaporation-works-0610
- **Chen, T., & Guestrin, C.** (2016). XGBoost: A Scalable Tree Boosting System. *Proceedings* of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD '16, 785-794. https://doi.org/10.1145/2939672.2939785

- Chia, M. Y., Huang, Y. F., Koo, C. H., & Fung, K. F. (2020). Recent Advances in Evapotranspiration Estimation Using Artificial Intelligence Approaches with a Focus on Hybridization Techniques—A Review. Agronomy, 10(1), 101. https://doi.org/10.3390/agronomy10010101
- **Cobaner, M.** (2013). Reference evapotranspiration based on Class A pan evaporation via wavelet regression technique. *Irrigation Science*, *31*(2), 119-134. https://doi.org/10.1007/s00271-011-0297-x
- **Corbari, C., Ravazzani, G., Galvagno, M., Cremonese, E., & Mancini, M.** (2017). Assessing Crop Coefficients for Natural Vegetated Areas Using Satellite Data and Eddy Covariance Stations. *Sensors*, *17*(11), 2664. https://doi.org/10.3390/s17112664
- **Cortes, C., & Vapnik, V.** (1995). Support-vector networks. *Machine Learning*, *20*(3), 273-297. https://doi.org/10.1007/BF00994018
- Custodio, E., & Llamas, M. R. (1996). Hidrología subterránea. (2. ed. corr). Ed. Omega.
- **Dalton, J.** (1802). Experiments and observations to determine whether the quantity of rain and dew is equal to the quantity of water carried off by rivers and raised by evaporation; with an inquiry into the origin of the springs. Philosophical Society Memories.
- Djaman, K., Koudahe, K., Akinbile, C. O., & Irmak, S. (2017). Evaluation of Eleven Reference Evapotranspiration Models in Semiarid Conditions. *Journal of Water Resource and Protection*, 09(12), 1469-1490. https://doi.org/10.4236/jwarp.2017.912094
- **Doorenbos, J., & Pruitt, W.** (1977). *Guidelines for predicting crop water requirements. Irrigation and Drainage*. Food and Agriculture Organization of the United Nations 24.
- **Dorogush, A. V., Ershov, V., & Gulin, A.** (2018). CatBoost: Gradient boosting with categorical features support. *arXiv:1810.11363* [cs, stat]. http://arxiv.org/abs/1810.11363
- Droogers, P., & Allen, R. G. (2002). Estimating Reference Evapotranspiration Under Inaccurate Data Conditions. *Irrigation and Drainage Systems*, *16*(1), 33-45. https://doi.org/10.1023/A:1015508322413
- **Escalante, B.** (2012). Remote Sensing: Advanced Techniques and Platforms. BoD Books on Demand.
- Feng, Y., Cui, N., Gong, D., Zhang, Q., & Zhao, L. (2017). Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling. *Agricultural Water Management*, 193, 163-173. https://doi.org/10.1016/j.agwat.2017.08.003
- Freund, Y., & Schapire, R. E. (1995). A desicion-theoretic generalization of on-line learning and an application to boosting. En P. Vitányi (Ed.), *Computational Learning Theory* (pp. 23-37). Springer. https://doi.org/10.1007/3-540-59119-2_166
- **Friedman, J. H.** (2001). Greedy Function Approximation: A Gradient Boosting Machine. *The Annals of Statistics*, *29*(5), 1189-1232. JSTOR.

- Gash, J. H. C. (1994). The atmospheric boundary layer, J. R. Garratt, Cambridge University Press (Cambridge), 1992. No. of pages: Xviii + 316. Price: £50.00, US\$79.95 (hardback) ISBN 0521380529. International Journal of Climatology, 14(1),112-113.https://doi.org/10.1002/joc.3370140113
- Gianotti, D. J. S., Rigden, A. J., Salvucci, G. D., & Entekhabi, D. (2019). Satellite and Station Observations Demonstrate Water Availability's Effect on Continental-Scale Evaporative and Photosynthetic Land Surface Dynamics. *Water Resources Research*, *55*(1), 540-554. https://doi.org/10.1029/2018WR023726
- **Granata, F.** (2019). Evapotranspiration evaluation models based on machine learning algorithms—A comparative study. *Agricultural Water Management*, *217*, 303-315. https://doi.org/10.1016/j.agwat.2019.03.015
- Hager, W. H. (2015). *Hydraulicians in the USA 1800-2000: A biographical dictionary of leaders in hydraulic engineering and fluid mechanics.* CRC Press.
- Harbeck, G. E. (1962). A practical field technique for measuring reservoir evaporation utilizing mass-transfer theory. United States Geological Survey Prof. Paper 272, 101-105.
- Hargreaves George H. (1994). Defining and Using Reference Evapotranspiration. *Journal of Irrigation and Drainage Engineering*, *120*(6), 1132-1139. https://doi.org/10.1061/(ASCE)0733-9437(1994)120:6(1132)
- Hassan, R. (ed), Scholes, R. (ed), & Ash, N. (ed). (2005). Ecosystems and human wellbeing: Current state and trends. http://agris.fao.org/agris-search/search.do?recordID=XF2015043162
- Höge, M., Guthke, A., & Nowak, W. (2019). The hydrologist's guide to Bayesian model selection, averaging and combination. *Journal of Hydrology*, 572, 96-107. https://doi.org/10.1016/j.jhydrol.2019.01.072
- Hong, S., Hendrickx, J., & Allen, R. (2008). Comparison of Remote Sensing Energy Balance Models: Sebal V.S. Metric. *AGU Fall Meeting Abstracts*.
- Houborg, R., & McCabe, M. F. (2018). Daily Retrieval of NDVI and LAI at 3 m Resolution via the Fusion of CubeSat, Landsat, and MODIS Data. *Remote Sensing*, 10(6), 890. https://doi.org/10.3390/rs10060890
- Idso, S. B., Jackson, R. D., Pinter, P. J., Reginato, R. J., & Hatfield, J. L. (1981). Normalizing the stress-degree-day parameter for environmental variability. *Agricultural Meteorology*, *24*, 45-55. https://doi.org/10.1016/0002-1571(81)90032-7
- Idso, Sherwood B., & Jackson, R. D. (1969). Thermal radiation from the atmosphere. Journal of Geophysical Research (1896-1977), 74(23), 5397-5403. https://doi.org/10.1029/JC074i023p05397
- INIA. (2019). Portal INIA Descripción estaciones e instrumentos. http://www.inia.uy:80/gras/Clima/Estaciones-agroclim%C3%A1ticas-INIA/Ubicaci%C3%B3n-e-informaci%C3%B3n/descripci%C3%B3nestaciones-e-instrumentos
- Jaafar, H. H., & Ahmad, F. A. (2020). Time series trends of Landsat-based ET using automated calibration in METRIC and SEBAL: The Bekaa Valley, Lebanon. *Remote Sensing of Environment, 238*, 111034. https://doi.org/10.1016/j.rse.2018.12.033

- Jackson, R. D., Idso, S. B., Reginato, R. J., & Pinter, P. J. (1981). Canopy temperature as a crop water stress indicator. *Water Resources Research*, *17*(4), 1133-1138. https://doi.org/10.1029/WR017i004p01133
- Jensen D. T., Hargreaves G. H., Temesgen B., & Allen R. G. (1997). Computation of ETo under Nonideal Conditions. *Journal of Irrigation and Drainage Engineering*, 123(5), 394-400. https://doi.org/10.1061/(ASCE)0733-9437(1997)123:5(394)
- Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., Bonan, G., Cescatti, A., Chen, J., de Jeu, R., Dolman, A. J., Eugster, W., Gerten, D., Gianelle, D., Gobron, N., Heinke, J., Kimball, J., Law, B. E., Montagnani, L., ... Zhang, K. (2010). Recent decline in the global land evapotranspiration trend due to limited moisture supply. *Nature*, 467(7318), 951-954. https://doi.org/10.1038/nature09396
- Kaimal, J. C., & Finnigan, J. J. (1994). Atmospheric boundary layer flows: Their structure and measurement. Oxford University Press.
- Karnieli, A., Agam, N., Pinker, R. T., Anderson, M., Imhoff, M. L., Gutman, G. G., Panov, N., & Goldberg, A. (2010). Use of NDVI and Land Surface Temperature for Drought Assessment: Merits and Limitations. *Journal of Climate*, 23(3), 618-633. https://doi.org/10.1175/2009JCLI2900.1
- Keskin, M. E., Terzi, Ö., & Taylan, D. (2004). Fuzzy logic model approaches to daily pan evaporation estimation in western Turkey / Estimation de l'évaporation journalière du bac dans l'Ouest de la Turquie par des modèles à base de logique floue. *Hydrological Sciences Journal*, 49(6), 1. https://doi.org/10.1623/hysj.49.6.1001.55718
- Khanal, S., Fulton, J., & Shearer, S. (2017). An overview of current and potential applications of thermal remote sensing in precision agriculture. *Computers and Electronics in Agriculture*, 139, 22-32.

https://doi.org/10.1016/j.compag.2017.05.001

- **Khoshravesh, M., Sefidkouhi, M. A. G., & Valipour, M.** (2017). Estimation of reference evapotranspiration using multivariate fractional polynomial, Bayesian regression, and robust regression models in three arid environments. *Applied Water Science*, *7*(4), 1911-1922. https://doi.org/10.1007/s13201-015-0368-x
- Kiehl, J. T., & Trenberth, K. E. (1997). Earth's Annual Global Mean Energy Budget. Bulletin of the American Meteorological Society, 78(2), 197-208. https://doi.org/10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2
- Kim, S., Singh, V. P., Seo, Y., & Kim, H. S. (2014). Modeling Nonlinear Monthly Evapotranspiration Using Soft Computing and Data Reconstruction Techniques. *Water Resources Management*, 28(1), 185-206. https://doi.org/10.1007/s11269-013-0479-9
- Kisi, O. (2013). Applicability of Mamdani and Sugeno fuzzy genetic approaches for modeling reference evapotranspiration. *Journal of Hydrology*, 504, 160-170. https://doi.org/10.1016/j.jhydrol.2013.09.043

- KIŞI, O., & ÇIMEN, M. (2009). Evapotranspiration modelling using support vector machines / Modélisation de l'évapotranspiration à l'aide de 'support vector machines'. *Hydrological Sciences Journal*, 54(5), 918-928. https://doi.org/10.1623/hysj.54.5.918
- Kumar M., Raghuwanshi N. S., Singh R., Wallender W. W., & Pruitt W. O. (2002). Estimating Evapotranspiration using Artificial Neural Network. *Journal of Irrigation and Drainage Engineering*, *128*(4), 224-233. https://doi.org/10.1061/(ASCE)0733-9437(2002)128:4(224)
- Kustas, W. P., Agam, N., Alfieri, J. G., McKee, L. G., Prueger, J. H., Hipps, L. E., Howard, A. M., & Heitman, J. L. (2019). Below canopy radiation divergence in a vineyard: Implications on interrow surface energy balance. *Irrigation Science*, 37(3), 227-237. https://doi.org/10.1007/s00271-018-0601-0
- Ladlani, I., Houichi, L., Djemili, L., Heddam, S., & Belouz, K. (2012). Modeling daily reference evapotranspiration (ET0) in the north of Algeria using generalized regression neural networks (GRNN) and radial basis function neural networks (RBFNN): A comparative study. *Meteorology and Atmospheric Physics*, *118*(3), 163-178. https://doi.org/10.1007/s00703-012-0205-9
- Lascano, R. J. (2000). A General System to Measure and Calculate Daily Crop Water Use. *Agronomy Journal*, 92(5), 821-832. https://doi.org/10.2124/agropi2000.025821y
- https://doi.org/10.2134/agronj2000.925821x Lek, S., & Guégan, J. F. (1999). Artificial neural networks as a tool in ecological
- modelling, an introduction. *Ecological Modelling*, 120(2), 65-73. https://doi.org/10.1016/S0304-3800(99)00092-7
- Liou, Y.-A., & Kar, S. (2014). Evapotranspiration Estimation with Remote Sensing and Various Surface Energy Balance Algorithms—A Review. *Energies*, 7(5), 2821-2849.https://doi.org/10.3390/en7052821
- Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., & Pietikäinen, M. (2020). Deep Learning for Generic Object Detection: A Survey. *International Journal of Computer Vision*, 128(2), 261-318. https://doi.org/10.1007/s11263-019-01247-4
- Lu, Z., Kinefuchi, I., Wilke, K. L., Vaartstra, G., & Wang, E. N. (2019). A unified relationship for evaporation kinetics at low Mach numbers. *Nature Communications*, 10(1), 1-8. https://doi.org/10.1038/s41467-019-10209-w
- McCabe, M. F., Miralles, D. G., Holmes, T. R. H., & Fisher, J. B. (2019). Advances in the Remote Sensing of Terrestrial Evaporation. *Remote Sensing*, 11(9), 1138. https://doi.org/10.3390/rs11091138
- **Meyer, A. F.** (1915). *Computing run-off from rain fall and other physical data.* Transactions of the American Society of Civil Engineers 79, 1056-1155.
- Milas, A. S., Cracknell, A. P., & Warner, T. A. (2018). Drones the third generation source of remote sensing data. *International Journal of Remote Sensing*, *39*(21), 7125-7137.https://doi.org/10.1080/01431161.2018.1523832
- Misaghian, N., Shamshirband, S., Petković, D., Gocic, M., & Mohammadi, K. (2017). Predicting the reference evapotranspiration based on tensor decomposition. *Theoretical and Applied Climatology*, *130*(3), 1099-1109. https://doi.org/10.1007/s00704-016-1943-2

- **Monsalve Saenz, G.** (1999). Hidrología en la Ingeniería (2a. ed.). Santafe de Bogota: Alfaomega.
- Muñoz Carpena, R., & Ritter Rodriguez, A. (2005). *Hidrología agroforestal: Vol. I.* Mundi-Prensa. Madrid.
- Nueva versión internacional. Bible Gateway, www.biblegateway.com. Accedido el 30 octubre 2020
- Nourani, V., Elkiran, G., & Abdullahi, J. (2019). Multi-station artificial intelligence based ensemble modeling of reference evapotranspiration using pan evaporation measurements. *Journal of Hydrology*, *577*, 123958. https://doi.org/10.1016/j.jhydrol.2019.123958
- Pal, M., & Deswal, S. (2009). M5 model tree based modelling of reference evapotranspiration. *Hydrological Processes*, 23(10), 1437-1443. https://doi.org/10.1002/hyp.7266
- Palmer, T. n, Doblas-Reyes, F. j, Hagedorn, R., & Weisheimer, A. (2005). Probabilistic prediction of climate using multi-model ensembles: From basics to applications. *Philosophical Transactions of the Royal Society B: Biological Sciences*, *360*(1463), 1991-1998. https://doi.org/10.1098/rstb.2005.1750
- **Partal, T.** (2009). Modelling evapotranspiration using discrete wavelet transform and neural networks. *Hydrological Processes, 23*(25), 3545-3555. https://doi.org/10.1002/hyp.7448
- **Penmann, H. L.** (1948). *Natural evaporation from open water, bare soil and grass*. Royal Society Proceedings Series A 193, 120-145.
- Pielke, R. A., Sr, Avissar, R., Raupach, M., Dolman, A. J., Zeng, X., & Denning, A. S. (1998). Interactions between the atmosphere and terrestrial ecosystems: Influence on weather and climate. *Global Change Biology*, 4(5), 461-475. https://doi.org/10.1046/j.1365-2486.1998.t01-1-00176.x
- **Pino-Vargas, E.** (2019). Los drones una herramienta para una agricultura eficiente: Un futuro de alta tecnología. *Idesia (Arica), 37*. https://doi.org/10.4067/S0718-34292019005000402
- Pôças, I., Paço, T. A., Cunha, M., Andrade, J. A., Silvestre, J., Sousa, A., Santos, F. L., Pereira, L. S., & Allen, R. G. (2014). Satellite-based evapotranspiration of a superintensive olive orchard: Application of METRIC algorithms. *Biosystems Engineering*, 128, 69-81. https://doi.org/10.1016/j.biosystemseng.2014.06.019
- Ponce, V. M. (1989). Engineering hydrology: Principles and practices. Prentice Hall.
- **Raghavendra. N, S., & Deka, P. C.** (2014). Support vector machine applications in the field of hydrology: A review. *Applied Soft Computing*, *19*, 372-386. https://doi.org/10.1016/j.asoc.2014.02.002
- **Rahimikhoob, A.** (2010). Estimation of evapotranspiration based on only air temperature data using artificial neural networks for a subtropical climate in Iran. *Theoretical and Applied Climatology*, *101*(1), 83-91. https://doi.org/10.1007/s00704-009-0204-z
- **Rohwer, D.** (1931). *Evaporation from free water surfaces*. Technical Bulletin no. 27 1, U.S. Department of Agriculture.

- **Rosenblatt, F.** (1958). The perceptron: A probabilistic model for information storage and organization in the brain. *Psychological Review*, 65(6), 386-408. https://doi.org/10.1037/h0042519
- **Sanchez, F. J.** (2017). *Hidrología Superficial y Subterránea*. Createspace Independent Pub., 414 pp.
- Sánchez Martínez, M., & Carvacho Bart, L. (2011). Comparación de ecuaciones empíricas para el cálculo de la evapotranspiración de referencia en la Región del Libertador General Bernardo O'Higgins, Chile. *Revista de Geografía Norte Grande*, 50, 171-186. https://doi.org/10.4067/S0718-34022011000300010
- Santos, C. A. C. dos, Bezerra, B. G., Silva, B. B. da, & Rao, T. V. R. (2010). Assessment of daily actual evapotranspiration with SEBAL and S-SEBI algorithms in cotton crop. *Revista Brasileira de Meteorologia*, 25(3), 383-392.

https://doi.org/10.1590/S0102-77862010000300010

- Senay, Gabriel B., Bohms, S., Singh, R. K., Gowda, P. H., Velpuri, N. M., Alemu, H., & Verdin, J. P. (2013). Operational Evapotranspiration Mapping Using Remote Sensing and Weather Datasets: A New Parameterization for the SSEB Approach. *JAWRA Journal of the American Water Resources Association*, 49(3), 577-591. https://doi.org/10.1111/jawr.12057
- Senay, G.B., Budde, M. E., & Verdin, J. P. (2011). Enhancing the Simplified Surface Energy Balance (SSEB) approach for estimating landscape ET: Validation with the METRIC model. *Agricultural Water Management*, 98(4), 606-618. https://doi.org/10.1016/j.agwat.2010.10.014
- Sisodiya, N., Dube, N., & Thakkar, P. (2020). Next-Generation Artificial Intelligence Techniques for Satellite Data Processing. En D. J. Hemanth (Ed.), Artificial Intelligence Techniques for Satellite Image Analysis (pp. 235-254). Springer International Publishing. https://doi.org/10.1007/978-3-030-24178-0_11
- Society, N. G. (2019, agosto 8). *Evaporation*. National Geographic Society. http://www.nationalgeographic.org/encyclopedia/evaporation/
- Stagnitti, F., Parlange, J.-Y., & Rose, C. W. (1989). Hydrology of a small wet catchment. *Hydrological Processes*, 3(2), 137-150. https://doi.org/10.1002/hyp.3360030204
- Szilagyi, J., & Jozsa, J. (2008). New findings about the complementary relationshipbased evaporation estimation methods. *Journal of Hydrology*, 354(1), 171-186. https://doi.org/10.1016/j.jhydrol.2008.03.008
- Traore, S., Wang, Y.-M., & Kerh, T. (2010). Artificial neural network for modeling reference evapotranspiration complex process in Sudano-Sahelian zone. *Agricultural Water Management*, 97(5), 707-714. https://doi.org/10.1016/j.agwat.2010.01.002
- Twine, T. E., Kustas, W. P., Norman, J. M., Cook, D. R., Houser, P. R., Meyers, T. P., Prueger, J. H., Starks, P. J., & Wesely, M. L. (2000). Correcting eddy-covariance flux underestimates over a grassland. *Agricultural and Forest Meteorology*, *103*(3), 279-300. https://doi.org/10.1016/S0168-1923(00)00123-4
- Veysi, S., Naseri, A. A., Hamzeh, S., & Bartholomeus, H. (2017). A satellite based crop water stress index for irrigation scheduling in sugarcane fields. *Agricultural Water Management*, 189, 70-86. https://doi.org/10.1016/j.agwat.2017.04.016

- Wagle, P., & Gowda, P. H. (2019). Editorial for the Special Issue "Remote Sensing of Evapotranspiration (ET)". Remote Sensing, 11(18), 2146. https://doi.org/10.3390/rs11182146
- Walker, G. K. (1984). Evaporation from wet soil surfaces beneath plant canopies. Agricultural and Forest Meteorology, 33(2-3), 259-264. https://doi.org/10.1016/0168-1923(84)90075-3
- Weiss, M., Jacob, F., & Duveiller, G. (2020). Remote sensing for agricultural applications: A meta-review. Remote Sensing of Environment, 236, 111402. https://doi.org/10.1016/j.rse.2019.111402
- Wild, M., Folini, D., Schär, C., Loeb, N., Dutton, E. G., & König-Langlo, G. (2013). The global energy balance from a surface perspective. *Climate Dynamics*, 40(11-12), 3107-3134. https://doi.org/10.1007/s00382-012-1569-8
- Wu, M., Muhammad, S., Chen, F., Niu, Z., & Wang, C. (2015). Combining remote sensing and eddy covariance data to monitor the gross primary production of an estuarine wetland ecosystem in East China. Environmental Science. Processes & Impacts, 17(4),753-762.https://doi.org/10.1039/c5em00061k
- Yan, Z., Wang, S., Ma, D., Liu, B., Lin, H., & Li, S. (2019). Meteorological Factors Affecting Pan Evaporation in the Haihe River Basin, China. Water, 11(2), 317. https://doi.org/10.3390/w11020317
- Yang, F., White, M. A., Michaelis, A. R., Ichii, K., Hashimoto, H., Votava, P., Zhu, A.-X., & Nemani, R. R. (2006). Prediction of Continental-Scale Evapotranspiration by Combining MODIS and AmeriFlux Data Through Support Vector Machine. IEEE Transactions on Geoscience and Remote Sensing, 44(11), 3452-3461. https://doi.org/10.1109/TGRS.2006.876297
- Yao, Y., Liang, S., Li, X., Zhang, Y., Chen, J., Jia, K., Zhang, X., Fisher, J. B., Wang, X., Zhang, L., Xu, J., Shao, C., Posse, G., Li, Y., Magliulo, V., Varlagin, A., Moors, E. J., Boike, J., Macfarlane, C., ... Gielen, B. (2017). Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method. Journal of Hydrology, 553, 508-526.
 - https://doi.org/10.1016/j.jhydrol.2017.08.013
- Yaseen, Z. M., Al-Juboori, A. M., Beyaztas, U., Al-Ansari, N., Chau, K.-W., Qi, C., Ali, M., Salih, S. Q., & Shahid, S. (2020). Prediction of evaporation in arid and semi-arid regions: A comparative study using different machine learning models. Engineering Applications of Computational Fluid Mechanics, 14(1), 70-89. https://doi.org/10.1080/19942060.2019.1680576
- Youssef, Y., & Khodzinskava, A. (2019). A Review of Evaporation Reduction Methods from Water Surfaces. E3S Web of Conferences, 97, 05044. https://doi.org/10.1051/e3sconf/20199705044
- Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
- Zendehboudi, A., Baseer, M. A., & Saidur, R. (2018). Application of support vector machine models for forecasting solar and wind energy resources: A review. Journal of Cleaner Production, 199, 272-285.

https://doi.org/10.1016/j.jclepro.2018.07.164

- Zhakhovsky, V. V., Kryukov, A. P., Levashov, V. Y., Shishkova, I. N., & Anisimov, S. I. (2019). Mass and heat transfer between evaporation and condensation surfaces: Atomistic simulation and solution of Boltzmann kinetic equation. *Proceedings of the National Academy of Sciences*, *116*(37), 18209-18217. https://doi.org/10.1073/pnas.1714503115
- Zhao, T., Wang, Q. J., & Schepen, A. (2019). A Bayesian modelling approach to forecasting short-term reference crop evapotranspiration from GCM outputs. *Agricultural and Forest Meteorology*, 269-270, 88-101. https://doi.org/10.1016/j.agrformet.2019.02.003

APÉNDICE A: EVAPOTRANSPIRACIÓN DEL CULTIVO

Apéndice A.1. Descripción coeficiente Kc de los cultivos **Apéndice A.2.** Duración etapas de desarrollo de los cultivos **Apéndice A.3.** Valores de los coeficientes Kc de los cultivos

Apéndice A.1. Descripción de Coeficiente *K_c* de Cultivos

Introducción

Este apéndice trata sobre el cálculo de la evapotranspiración del cultivo (ET_c) basado en el Manual 56 de la FAO - *Evapotranspiración del cultivo, Guías para la determinación de los requerimientos de agua de los cultivos* (bajo condiciones estándar). Se considera que no existen limitaciones en el desarrollo del cultivo debido a estrés hídrico o salino, densidad del cultivo, plagas y enfermedades, presencia de malezas o baja fertilidad. El valor de ET_c es calculado a través del enfoque del coeficiente del cultivo, donde los efectos de las condiciones del tiempo atmosférico son incorporados en ET_o y las características del cultivo son incorporadas en el coeficiente K_c :

$ET_c = K_c ET_o$

Los efectos combinados de la transpiración del cultivo y la evaporación del suelo se integran en un coeficiente único del cultivo. El coeficiente único K_c incorpora las características del cultivo y los efectos promedios de la evaporación en el suelo.

Solamente en los casos en que el coeficiente de cultivo sea necesario para periodos diarios, para cultivos específicos y para años específicos, se requerirá de coeficientes separados de transpiración y evaporación $(K_{cb} + K_e)$.

El procedimiento de cálculo de la evapotranspiración del cultivo es el siguiente:

- 1.° Identificar las etapas de desarrollo del cultivo, determinando la duración de cada etapa y seleccionando los valores correspondientes de K_c .
- 2.° Ajustar los valores de K_c seleccionados según la frecuencia de humedecimiento o las condiciones climáticas durante cada etapa.
- 3.° Construir la curva del coeficiente del cultivo, la cual permite la determinación de *K*_c para cualquier etapa durante el período de desarrollo.
- 4.° Calcular ET_c como el producto de ET_o y K_c .

EVAPORACIÓN Y EVAPOTRANSPIRACIÓN EN HIDROLOGÍA MEDICIÓN, ESTIMACIÓN Y APLICACIONES

Duración de las Etapas de Crecimiento

La publicación de la serie de Riego y Drenaje de la FAO, n.º 24, incluye duraciones generales para las cuatro etapas de crecimiento de distintos cultivos, así como la duración total de la temporada de crecimiento de cada cultivo para distintos tipos de clima y diferentes localidades. Esta información ha sido ampliada con otras fuentes y se sintetiza en el Apéndice A.2.

En algunos casos, el momento de aparición de la vegetación, así como el momento de la cobertura completa pueden ser estimados usando regresiones basadas en la acumulación de grados de temperatura o a través de modelos más sofisticados de crecimiento vegetal. Estos modelos deberán ser verificados y validados para cada área o para la variedad específica del cultivo, usando observaciones locales.

En general, tanto la tasa de crecimiento del desarrollo de la cobertura vegetal como el tiempo para alcanzar la cobertura completa están afectados por las condiciones climáticas y, particularmente, por la temperatura diaria del aire. Por lo tanto, el peri0odo de tiempo entre la siembra y la cobertura completa variará con el clima, latitud, altitud y fecha de siembra. Este periodo también cambiará con la variedad del cultivo. Generalmente, una vez alcanzada la completa cobertura vegetal, la tasa adicional de desarrollo fenológico (floración, desarrollo de la semilla, madurez y senescencia) es más dependiente del genotipo de la planta que de las condiciones climáticas; por ejemplo, en la Figura A.1.1. se presenta la variación de la duración del periodo de crecimiento para una variedad de arroz en una región particular y para diferentes fechas de siembra.

Coeficientes del Cultivo

Durante el periodo de crecimiento del cultivo, la variación del coeficiente del cultivo K_c expresa los cambios en la vegetación y en el grado de cobertura del suelo. Esta variación del coeficiente K_c a lo largo del crecimiento del cultivo está representada por la curva del coeficiente del cultivo. Para describir y construir la curva del coeficiente del cultivo se necesitan solamente tres valores de K_c : los correspondientes a la etapa inicial (K_{cini}), la etapa de mediados de temporada (K_{cmed}) y la etapa final (K_{cini}).

Valores Tabulados de K_c

En el Apéndice A.3. se incluyen valores típicos de $K_{cinP} K_{cmed} y K_{cfin}$ correspondientes a distintos cultivos. Los coeficientes presentados son organizados en grupos (p. ej. hortalizas pequeñas, leguminosas, cereales, etc.) con la finalidad de facilitar la localización del cultivo en el cuadro y para ayudar a comparar cultivos pertenecientes a un mismo grupo. Generalmente, los coeficientes para los miembros de un mismo grupo son parecidos, debido a la similitud de la altura de los cultivos, área foliar, grado de cobertura del suelo y manejo del agua.

Los coeficientes presentados en el Apéndice A.3. integran los efectos de la transpiración y la evaporación en el tiempo. El efecto de esta integración en el tiempo representa una frecuencia de humedecimiento promedio para un cultivo "estándar" bajo condiciones típicas de desarrollo bajo riego. Los valores de K_c durante la etapa inicial y de desarrollo del cultivo dependerán de la gran diversidad de frecuencias de humedecimiento del suelo, por lo que se requerirá de ajustes al valor de K_{cini} considerado. Para condiciones de humedecimiento frecuente, tal como en los casos de riego por aspersión de alta frecuencia o lluvias, los valores de K_{cini} pudieran ser incrementados sustancialmente. La Figura A.1.2. muestra una curva K_c típica.

A continuación, planteamos un ejemplo de programación de riego haciendo uso de la curva K_c , información climática y de suelos. Se usó programa CROWAT 8.0. En la Figura A.1.3. se muestra la pantalla para cálculo de ET_o , según programa FAO; en la Figura A.1.4., el tratamiento de datos de precipitación; en la Figura A.1.5., el cultivo y la curva K_c ; en la Figura A.1.6., características del suelo. Asimismo, en la Figura A.1.7. se muestra el requerimiento de agua del cultivo y, finalmente, en la Figura A.1.8., la programación de riego.

País Loo	cation 9529	_	Estación KURNOOL							
Altitud 2	81 m .		Latitud 15.80 'N - Longitud 78.06							
Mes	Temp Min	Temp Max	Humedad	Viento	Insolación	Bad	ETo			
	°C	°C.	%	km/día	horas	MJ/m²/día	mm/di-			
Enero	17.0	31.3	47	104	8.8	18.7	3.99			
Febrero	19.3	34.3	37	112	9.3	21.2	4.91			
Marzo	22.5	37.5	30	121	9.7	23.5	5.93			
Abril	26.0	39.3	34	138	9.2	23.6	6.66			
Mayo	27.2	40.0	37	225	8.3	22.2	7.93			
Junio	25.0	35.6	54	354	5.8	18.3	7.19			
Julio	23.8	32.5	64	363	4.4	16.2	5.74			
Agosto	23.5	32.1	63	302	4.9	16.9	5.47			
Septiembre	23.3	31.9	65	207	5.5	17.3	4.83			
Octubre	22.4	32.4	61	95	8.7	20.7	4.58			
Noviembre	19.2	31.0	56	78	7.7	17.6	3.73			
Diciembre	16.6	30.3	51	69	8.4	17.7	3.40			
Promedia	22.1	34.0	50	101	75	19.5	5 26			

Figura A.1.3. *ET*_o Penman-Monteith, datos mensuales

ión KURNOOL	Método Prec. Ef Porcentaje fijo					
	Precipit.	Prec. efec	1			
	mm	mm				
Enero	0.0	0.0				
Febrero	3.4	27				
Marzo	1.4	1.1				
Abril	7.5	6.0				
Mayo	33.6	26.9				
Junio	54.2	43.4				
Julio	72.7	58.2				
Agosto	74.8	59.8				
Septiembre	87.8	70.2				
Octubre	67.9	54.3				
Noviembre	17.8	14.2				
Diciembre	1.4	1.1				
Total	422.5	338.0				

Figura A.1.4. Tratamiento de datos de precipitación

Figura A.1.5. *Cultivo y curva K_c*

Figura A.1.6. *Características del suelo*

Nombre	e del suelo	RED SANDY LOA	M	
atos generales de suelo				
Humedad de suelo	disponible t	otal (CC-PMP)	140.0	mm/metro
Tasa maxima de infi	30	mm/día		
Pro	fundidad rad	dicular máxima	900	centímetros
Agotamiento inicial de hum.	de suelo (co	mo % de ADT)	0	2
Humedad de sue	lo inicialmer	nte disponible	140.0	mm/metro

Figura A.1.7. *Requerimiento de agua del cultivo*

Estaci Est. de	ón ETo KURNOO Iluvia KURNOO	L		Cultivo a de siembra	Itivo Small Grains nbra 23/04		
Mes	Decada	Etapa	Kc	ETc	ETc	Prec. efec	Req.Riego
			coef	mm/día	mm/dec	mm/dec	mm/dec
Abr	3	Inic	0.30	2.12	17.0	3.1	13.1
May	1	Inic	0.30	2.29	22.9	6.7	16.2
May	2	Des	0.31	2.55	25.5	9.1	16.4
May	3	Des	0.51	3.98	43.8	10.9	32.9
Jun	1	Des	0.75	5.60	56.0	12.7	43.4
Jun	2	Des	0.99	7.08	70.8	14.5	56.3
Jun	3	Med	1.11	7.47	74.7	16.1	58.5
Jul	1	Med	1.11	6.86	68.6	18.1	50.4
Jul	2	Med	1.11	6.28	62.8	20.0	42.8
Jul	3	Med	1.11	6.22	68.4	20.0	48.4
Ago	1	Med	1.11	6.19	61.9	19.5	42.4
Ago	2	Med	1.11	6.09	60.9	19.5	41.3
Ago	3	Fin	1.07	5.65	62.1	20.8	41.3
Sep	1	Fin	0.88	4.43	44.3	23.1	21.3
Sep	2	Fin	0.68	3.26	32.6	24.6	8.0
Sep	3	Fin	0.47	2.24	22.4	22.4	0.0
Oct	1	Fin	0.33	1.54	6.2	8.2	0.0
-					801.0	269.5	532.8

EVAPORACIÓN Y EVAPOTRANSPIRACIÓN EN HIDROLOGÍA -MEDICIÓN, ESTIMACIÓN Y APLICACIONES

Figura	A.1.8.
---------------	--------

Programación de riego

ETo e	stación	KURNOOL	-	Cultivo	Small Gr	ains	_	Siembra 23/04				
Est. de	lluvia	KURNOOL		Suelo RED SANDY LOAM				Cosecha 04/10				
Formato de Prog Bal.	e Tabla ram. de r diario de	iego agua de	suela	Mom Applica Ef. ci	ento: F ción: F ampo 7	egara agi eponera i 0 %	otamiento críti capacidad de	co campo				
Fecha	Día	Etapa	Precipit.	Ks	ETa	Agot.	Lám.Neta	Déficit	Pérdida	Lam.Br.	Caudal	
			mm	frace.	%	%	mm	mm	mm	mm	Vs/ha	
26 May	34	Des	0.0	1.00	100	53	60.3	0.0	0.0	86.1	0.29	
16 Jun	55	Des	0.0	1.00	100	59	93.5	0.0	0.0	133.6	0.74	
5 Jul	74	Med	0.0	1.00	100	63	105.8	0.0	0.0	151.1	0.92	
30 Jul	99	Med	0.0	1.00	100	61	102.5	0.0	0.0	146.4	0.68	
29 Ago	129	Fin	0.0	1.00	100	62	105.0	0.0	0.0	150.0	0.58	
4 Oct	Fin	Fin	0.0	1.00	0	9						
- Totales Deficie	uso r Uso r Uso p Efic. de encia de	Lámin Lámi Pérdida t eal de agu ot. de agu programa programa	na bruta tol ina neta tol otal de rieg ua del cultiv ua del cultiv ción de rieg ción de rieg	zal 667.3 sal 467.1 o 0.0 vo 799.4 vo 799.4 go 100.0 go 0.0	mm mm mm mm mm		Pre Def. de Requi Efi	Precipita cipitaciór Pérdida hum. er er. reales c. de pre	ción total Efectiva tot.prec. cosecha de riego cipitación	340.5 317.7 22.8 14.7 481.7 93.3	nm mm mm mm mm	

Apéndice A.2: Duración etapas de desarrollo de los cultivos

Evapotranspiración del cultivo

CUADRO 11

Duración de las etapas de crecimiento* del cultivo para distintos períodos de siembra y regiones climáticas (días)

Cultivo	Inic. (L _{ini})	Des. (L _{des})	Med (L _{med})	Final (L _{fin})	Total	Fecha de Siembra	Región
a. Hortalizas Pequeñas							
Brécol (Brócoli)	35	45	40	15	135	Sept.	Calif. Desierto, EU
Repollo	40	60	50	15	165	Sept.	Calif. Desierto, EU
Zanahoria	20	30	50/30	20	100	Oct/Ene.	Clima Árido
	30	40	60	20	150	Feb/Mar.	Mediterráneo
	30	50	90	30	200	Oct.	Calif. Desierto, EU
Coliflor	35	50	40	15	140	Sept	Calif. Desierto, EU
Apio (Céleri)	25	40	95	20	180	Oct.	(Semi)Árido
	25	40	45	15	125	Abril	Mediterráneo
	30	55	105	20	210	Ene.	(Semi)Árido
Cruciferas ¹	20	30	20	10	80	Abril	Mediterráneo
	25	35	25	10	95	Febrero	Mediterráneo
	30	35	90	40	195	Oct/Nov.	Mediterráneo
Lechuga	20	30	15	10	75	Abril.	Mediterráneo
	30	40	25	10	105	Nov/Ene.	Mediterráneo
	25	35	30	10	100	Oct/Nov.	Región Árida
	35	50	45	10	140	Feb.	Mediterráneo
Cebolla (seca)	15	25	70	40	150	Abril	Mediterráneo
	20	35	110	45	210	Oct; Ene.	Región Árida; Calif.
Cebolla (verde)	25	30	10	5	70	Abril/Mayo	Mediterráneo
	20	45	20	10	95	Octubre	Región Árida
	30	55	55	40	180	Marzo	Calif., EU
Cebolla (semilla)	20	45	165	45	275	Sept.	Calif. Desierto, EU
Espinaca	20	20	15/25	5	60/70	Abr; Sep/Oct	Mediterráneo
	20	30	40	10	100	Noviembre	Región Árida
Rábano	5	10	15	5	35	Mar/Abr.	Medit.; Europa
	10	10	15	5	40	Invierno	Región Árida
b. Hortalizas – Familia de	las Solaná	iceas					
Berenjena	30 30	40 45	40 40	20 25	130\140	Octubre May/Junio	Región Árida Mediterráneo
Pimiento Dulce	25/30	35	40	20	125	Abril/Junio	Europa y Medit.
(campana)	30	40	110	30	210	Octubre	Región Árida
Tomate	30	40	40	25	135	Enero	Región Árida
	35	40	50	30	155	Abr/Mayo	Calif., EU
	25	40	60	30	155	Enero	Calif. Desierto, EU
	35	45	70	30	180	Oct/Nov.	Región Árida
	30	40	45	30	145	Abril/Mayo	Mediterráneo
c. Hortalizas - Familia de	las Cucurb	itáceas					
Melón	30	45	35	10	120	Enero	Calif., EU
	10	60	25	25	120	Ago.	Calif., EU
Pepino	20	30	40	15	105	Junio/Ago.	Región Árida
	25	35	50	20	130	Nov; Feb.	Región Árida
Calabaza	20	30	30	20	100	Mar, Ago.	Mediterráneo
de Invierno	25	35	35	25	120	Junio	Europa
Calabacín	25	35	25	15	100	Abr; Dic.	Medit.; Reg. Árida
(zucchini)	20	30	25	15		May/Junio	Medit : Europa

* Las duraciones de las etapas de crecimiento presentadas en este Cuadro son indicativas de condiciones generales, pudiendo variar significativamente de región a región, con las condiciones climáticas y de cultivo, y con la variedad del cultivo. Se recomienda al usuario obtener información local apropiada.

¹ Las crucíferas incluyen repollo, coliflor, brócoli y col de Bruselas. El amplio rango de duraciones de la temporada productiva es debido a diferencias en variedades y especies.

104

EVAPORACIÓN Y EVAPOTRANSPIRACIÓN EN HIDROLOGÍA -MEDICIÓN, ESTIMACIÓN Y APLICACIONES

Capítulo 6 – ET_c – coeficiente único del cultivo (K_c)

Cultivo	Inic. (L _{ini})	Des. (L _{des})	Med, (L _{med})	Final (L _{fin})	Total	Fecha de Siembra	Región
Melón Dulce	25 30 15	35 30 40	40 50 65	20 30 15	120 140 135	Mayo Marzo Ago	Mediterráneo Calif., EU Calif. Desierto, EU
	30	45	65	20	160	Dic/Ene.	Región Árida
Sandía	20 10	30 20	30 20	30 30	110 80	Abril May/Ago.	Italia Cercano Este (desierto)
d. Raíces y Tubérculos							
Remolacha, mesa	15 25	25 30	20 25	10 10	70 90	Abr/Mayo Feb/Mar.	Mediterráneo Mediterráneo & Árido
Mandioca o Yuca: año 1	20	40	90	60	210	Período	Regiones Tropicales
año 2	150	40	110	60	360	Lluvioso	
Patata o Papa	25 25 30	30 30 35	30/45 45 50	30 30 30	115/130 130 145	Ene/Nov. Mayo Abril	Clima (Semi)Árido Clima continental Europa
	45 30	30 35	70 50	20 25	165 140	Abr/Mayo Dic.	Idaho, EU Calif. Desierto, EU
Camote o Batata	20 15	30 30	60 50	40 30	150 125	Abril Período Lluvioso	Mediterráneo Regiones Tropicales
Remolacha azucarera	30 25 25 50 25 45 35	45 30 65 40 35 75 60	90 90 100 50 50 80 70	15 10 65 40 50 30 40	180 155 255 180 160 230 205	Marzo Junio Sept. Abril Mayo Noviembre Noviembre	Calif., EU Calif., EU Calif. Desierto, EU Idaho, EU Mediterráneo Mediterráneo Regiones Áridas
e. Leguminosas (Legumir	nosae)						
Judías, o Frijoles (verdes)	20 15	30 25	30 25	10 10	90 75	Feb/Mar. Ago/Sep.	Calif., Mediterráneo Calif., Egipto, Líbano
Judías o Frijoles (secos)	20 15 25	30 25 25	40 35 30	20 20 20	110 95 100	May/Junio Junio Junio	Climas Continentales Pakistán, Calif. Idaho, EU
Habas - secas - verdes	15 20 90 90	25 30 45 45	35 35 40 40	15 15 60 0	90 100 235 175	Mayo Mar/Abr Nov. Nov.	Europa Mediterráneo Europa Europa
Caupís (cowpeas)	20	30	30	20	110	Marzo	Mediterráneo
Cacahuete o Maní	25 35 35	35 35 45	45 35 35	25 35 25	130 140 140	Período seco Mayo May/Junio	Oeste de África Latitudes Altas Mediterráneo
Lentejas	20 25	30 35	60 70	40 40	150 170	Abril Oct/Nov.	Europa Región Árida
Guisantes o arveja	15 20 35	25 30 25	35 35 30	15 15 20	90 100 110	Mayo Mar/Abr. Abril	Europa Mediterráneo Idaho, EU
Soya o soja	15 20 20	15 30/35 25	40 60 75	15 25 30	85 140 150	Dic. Mayo Junio	Trópicos Centro de EU Japón

Japón

NRO 11 (continuación) CU

105

106

Evapotranspiración del cultivo

CUADRO 11 (continuación)

Cultivo	Inic. (L _{ini})	Des. (L _{des})	Med (L _{med})	Final (L _{fin})	Total	Fecha de Siembra	Región
f. Hortalizas perennes (cor	i letargo i	nvernal y s	uelo inicial	mente desi	nudo o con	mantillo)	
Alcachofa	40	40	250	30	360	Abr. (1ª año)	California
	20	25	250	30	325	May. (2º año)	(cortada en Mayo)
Espárragos	50	30	100	50	230	Feb.	Invierno cálido
	90	30	200	45	365	Feb.	Mediterráneo
g. Cultivos textiles							
Algodón	30	50	60	55	195	Mar.–Mayo	Egipto; Pakistán; Cal.
	45	90	45	45	225	Marzo	Calif. Desierto, EU
	30	50	60	55	195	Sept.	Yemen
	30	50	55	45	180	Abril	Texas
Lino	25	35	50	40	150	Abril	Europa
	30	40	100	50	220	Octubre	Arizona
h. Cultivos oleaginosos							
Ricino	25	40	65	50	180	Marzo	Climas (semi) Áridos
	20	40	50	25	135	Nov.	Indonesia
Cártamo	20	35	45	25	125	Abril	California, EU
	25	35	55	30	145	Marzo	Latitudes Altas
	35	55	60	40	190	Oct/Nov.	Región Árida
Sésamo	20	30	40	20	110	Junio	China
Girasol	25	35	45	25	130	Abril/Mayo	Medit.; California
i. Cereales							
Cebada/Avena/Trigo	15 20 15 40 40 20	25 25 30 30 60 50	50 60 65 40 60 60	30 30 40 20 40 30	120 135 150 130 200 160	Noviembre Marzo/Abril Julio Abril Noviembre Diciembre	India Central 35–45 °L Este de África
Trigo de invierno	20²	60²	70	30	180	Diciembre	Calif.; EU
	30	140	40	30	240	Noviembre	Mediterráneo
	160	75	75	25	335	Octubre	Idaho, EU
Granos (pequeños)	20	30	60	40	150	Abril	Mediterráneo
	25	35	65	40	165	Oct./Nov.	Pakistán; Reg. Árida
Maíz (grano)	30	50	60	40	180	Abril	Este de África (alt.)
	25	40	45	30	140	Dic./Ene.	Clima Árido
	20	35	40	30	125	Junio	Nigeria (húmedo)
	20	35	40	30	125	Octubre	India (seco, frío)
	30	40	50	30	150	Abril	España (prim,ver); Calif. EU
	30	40	50	50	170	Abril	Idaho, EU
Maíz (dulce)	20	20	30	10	80	Marzo	Filipinas
	20	25	25	10	80	May./Junio	Mediterráneo
	20	30	50/30	10	90	Oct./Dic.	Clima Árido
	30	30	30	10 ³	110	Abril	Idaho, EU
	20	40	70	10	140	Ene.	Calif. Desierto, EU
Mijo	15	25	40	25	105	Junio	Pakistán
	20	30	55	35	140	Abril	Centro de EU

² Estos períodos para el trigo de invierno se incrementarán en climas de nieve y heladas de acuerdo a los días de crecimiento potencial nulo y letargo del trigo. Bajo condiciones generales y cuando no se disponga de información local, la siembra del trigo de invierno en otoño puede suponerse que ocurre, en climas templados del norte, cuando el promedio de la temperatura media diaria del aire durante un periodo de 10 días consecutivos sea igual o inferior a los 17 °C, o en Diciembre 1, cualquiera que se produzca primero. Se puede suponer que la siembra del trigo de primavera ocurre cuando el promedio de la temperatura media diaria del aire durante un periodo de 10 días consecutivos sea igual o superior a los 5 °C. Se puede asumir que la siembra del maiz-grano en primavera ocurre cuando el promedio de 10 días consecutivos sea igual o superior a los 5 °C. Se puede asumir que la siembra del maiz-grano en primavera ocurre roundo el promedio de 10 días consecutivos sea igual o superior a los 5 °C.

³ La etapa final del maíz dulce será alrededor de 35 días si el maíz se deja madurar y secar.

EVAPORACIÓN Y EVAPOTRANSPIRACIÓN EN HIDROLOGÍA MEDICIÓN, ESTIMACIÓN Y APLICACIONES

Capítulo 6 – ET_c – coeficiente único del cultivo (K_c)

UADRO 11 (continuació	n)						
Cultivo	Inic. (L _{ini})	Des. (L _{des})	Med, (L _{med})	Final (L _{fin})	Total	Fecha de Siembra	Región
Sorgo	20 20	35 35	40 45	30 30	125 130	Mayo/Jun. Mar/Abril	EU, Pakistán., Med. Región Árida
Arroz	30 30	30 30	60 80	30 40	150 180	Dic; Mayo Mayo	Trópicos; Mediterráneo Trópicos
j. Forrajes							
Alfalfa, temporada completa⁴	10	30	varía	varía	varía		último -4°C (primavera) hasta primer -4°C (otoño)
Alfalfa⁴ 1er ciclo de corte	10 10	20 30	20 25	10 10	60 75	Enero Abril (último -4°C)	Calif., EU. Idaho, EU.
Alfalfa⁴, otros ciclos de corte	5 5	10 20	10 10	5 10	30 45	Marzo Junio	Calif., EU. Idaho, EU.
Bermuda para Semilla	10	25	35	35	105	Marzo	Calif. Desierto, EU
Bermuda, heno (distintos cortes)	10	15	75	35	135		Calif. Desierto, EU
Pastos, Gramas⁴	10	20					7 días antes del último - 4°C (primavera) hasta 7 días después del primer -4°C (otoño)
Pasto del Sudán, 1er corte	25	25	15	10	75	Abril	Calif. Desierto, EU
Sudán, otros ciclos de corte	3	15	12	7	37	Junio	Calif. Desierto, EU
k. Caña de Azúcar							
Caña de Azúcar, virgen	35 50 75	60 70 105	190 220 330	120 140 210	405 480 720		Latitudes Bajas Trópicos Hawai, EU
Caña de Azúcar, soca	25 30 35	70 50 105	135 180 210	50 60 70	280 320 420		Latitudes Bajas Trópicos Hawai, EU
l. Frutas Tropicales y Árbo	les						
Banana, 1 ^{er} año	120	90	120	60	390	Marzo	Mediterráneo
Banana, 2 ^{do} año	120	60	180	5	365	Feb.	Mediterráneo
Piña	60	120	600	10	790		Hawai, EU
m. Uvas y Moras							
Uvas	20 20 20 30	40 50 50 60	120 75 90 40	60 60 20 80	240 205 180 210	Abril Marzo Mayo Abril	Latitudes Bajas Calif., EU Latitudes Altas Latitudes Medias (vino)
Lúpulo	25	40	80	10	155	Abril	Idaho, EU
n. Árboles Frutales							
Cítricos	60	90	120	95	365	Ene.	Mediterráneo

CU.

(

Huerto de árboles

caducifolios

* En climas donde ocurre la muerte del cultivo por heladas, las temporadas productivas de la alfalfa y el pasto pueden ser estimadas como: alfalfa: último día con -4°C en primavera hasta primer día con -4°C en otoño (Everson, D.O., M. Faubion y D.E. Amos 1978. «Freezing temperatures and growing seasons in Idaho.» Univ. Idaho Agric. Exp. Station bulletin 494. 18 p.)

30

60

30

210

270

240

Marzo

Marzo

Marzo

Latitudes Altas

Latitudes Bajas

Calif., EU

70

70

50

20

20

30

90

120

130

pasto: 7 disantes del gittomo día con -4°C en primavera y 7 días después del último día con -4°C en otoño (Kruse E.G. y Haise, H.R. 1974. «Water use by native grasses in high altitude Colorado meadows.» USDA Agric. Res. Service, Western Region report ARS-W-6-1974. 60 páginas)

Evapotranspiración del cultivo

CultivoInic. (L)Des. (L)Med, (L)Final (L)Total Fecha de SiembraRegiónOlivos20906090270°MarzoMediterráneoPistachos20603040150Feb.MediterráneoNogal (nueces)201013030190AbrilUtah, EUo. Humedales - Climas - Humedales10308020140MayoUtah, EU; heladas										
Olivos209060902705MarzoMediterráneoPistachos20603040150Feb.MediterráneoNogal (nueces)201013030190AbrilUtah, EUHumedales – Climas TempladosHumedales10308020140MayoUtah, EU; heladas			Inic. (L _{ini})	Des. (L _{des})	Med, (L _{med})	Final (L _{fin})	Total	Fecha de Siembra	Región	
Pistachos 20 60 30 40 150 Feb. Mediterráneo Nogal (nueces) 20 10 130 30 190 Abril Utah, EU o. Humedales – Climas Templados 10 30 80 20 140 Mayo Utah, EU; heladas			20	90	60	90	270⁵	Marzo	Mediterráneo	
Nogal (nueces) 20 10 130 30 190 Abril Utah, EU o. Humedales – Climas Templados Humedales 10 30 80 20 140 Mayo Utah, EU; heladas			20	60	30	40	150	Feb.	Mediterráneo	
o. Humedales – Climas Templados Humedales 10 30 80 20 140 Mayo Utah, EU; heladas		eces)	s) 20	10	130	30	190	Abril	Utah, EU	
Humedales 10 30 80 20 140 Mayo Utah, EU; heladas	o. Humedales – Climas Templados									
(Anea, Junco) 180 60 90 35 365 Noviembre Florida, EU		s co)	10) 180	30 60	80 90	20 35	140 365	Mayo Noviembre	Utah, EU; heladas Florida, EU	
Humedales (veg. baja) 180 60 90 35 365 Noviembre Clima sin heladas		s (veg. baja)	veg. baja) 180	60	90	35	365	Noviembre	Clima sin heladas	

⁵ Los árboles de olivo obtienen hojas nuevas en Marzo. Vea nota de pie de página 24 del Cuadro 12 para información adicional, donde el Kc continua fuera del «período de crecimiento».

Fuente principal: Publicación de Riego y Drenaje FAO 24 (Doorenbos y Pruitt, 1977), Cuadro 22.

Las duraciones de las etapas inicial y de desarrollo pueden ser relativamente cortas para los árboles de hoja caduca y arbustos, los cuales pueden desarrollar hojas nuevas en la primavera con una gran rapidez (Figura 23).

En general, tanto la tasa de crecimiento a la cual se desarrolla la cobertura vegetal como el tiempo para alcanzar la cobertura completa están afectados por las condiciones climáticas y particularmente por la temperatura diaria del aire. Por lo tanto, el período de tiempo entre la siembra y la cobertura completa variará con el clima, latitud, altitud y fecha de siembra. Este período también cambiará con la variedad del cultivo. Generalmente, una vez alcanzada la completa cobertura vegetal, la tasa adicional de desarrollo fenológico (floración, desarrollo de la semilla, madurez y senescencia) es más dependiente del genotipo de la planta que de las condiciones climáticas. Por ejemplo en la Figura 28 se presenta la variación de la duración del período de crecimiento para una variedad de arroz en una región particular y para diferentes fechas de siembra.

El final de la etapa de mediados de temporada y el inicio de la etapa final es caracterizado por la senescencia de las hojas, la cual comienza con las hojas más bajas de las plantas. La duración de la etapa final puede ser relativamente corta (menor de diez días) para vegetación que muere por heladas (por ej. maíz de altura y en latitudes > 40°N) o para cultivos agrícolas que son cosechados frescos (por ejemplo, remolacha de mesa y hortalizas pequeñas).

Las temperaturas altas pueden acelerar la madurez y la senescencia de los cultivos. Asimismo, el mantenimiento de temperaturas altas (> 35°C) por períodos largos de tiempo pueden causar letargo en cultivos tales como la grama. Si se combinan temperaturas del aire extremadamente altas con situaciones de estrés hídrico, la condición de letargo en la grama puede ser permanente para el resto de la etapa de crecimiento. En general el estrés hídrico, así como otros tipos de estrés originados por las condiciones ambientales, aceleran la tasa de maduración del cultivo así como pueden acortar las etapas de mediados del período y final de estación.

Los valores presentados en el Cuadro 11 son útiles solamente como una guía general y para propósitos comparativos. Las duraciones de las etapas de desarrollo presentadas en el cuadro mencionado representan duraciones promedio para regiones y períodos específicos y su intención es de servir de ejemplo. Cuando sea posible se deberá utilizar información local acerca de las duraciones de cada etapa de crecimiento, con el objeto de incorporar los efectos de la variedad del cultivo, el clima y las prácticas agrícolas. La información local puede ser obtenida a través de entrevistas a los productores del campo, extensionistas agrícolas e investigadores de la localidad, así como la recopilación de información o usando información generada a través de la teledetección. En la determinación de las fechas de cada etapa, pueden ser de utilidad las guías y descripciones visuales obtenidas en la localidad.

108

CUADRO 11 (continuación)
Apéndice A.3: Valores de coeficiente K_c de los cultivos

Evapotranspiración del cultivo

110

CUADRO 12

Valores del coeficiente único (promedio temporal) del cultivo, K_c y alturas medias máximas de las plantas para cultivos no estresados y bien manejados en climas sub-húmedos (HR_{min} \approx 45%, u₂ \approx 2 m s⁻¹) para usar en la formula de la FAO Penman-Monteith ET_o.

Cultivo	$K_{c ini}^{1}$	$K_{c med}$	\mathbf{K}_{cfin}	Altura Máx. Cultivo (h) (m)
a. Hortalizas Pequeñas	0,7	1,05	0,95	
Brécol (Brócoli)		1,05	0,95	0,3
Col de Bruselas		1,05	0,95	0,4
Repollo		1,05	0,95	0,4
Zanahoria		1,05	0,95	0,3
Coliflor		1,05	0,95	0,4
Apio (Céleri)		1,05	1,00	0,6
Ajo		1,00	0,70	0,3
Lechuga		1,00	0,95	0,3
Cebolla – seca – verde – semila		1,05 1,00 1.05	0,75 1,00 0.80	0,4 0,3 0,5
Fspinaca		1 00	0.95	0,3
Rábano		0,90	0,85	0,3
b. Hortalizas– Familia de la Solanáceas	0,6	1,15	0,80	
Berenjena		1,05	0,90	0,8
Pimiento Dulce (campana)		1,05 ²	0,90	0,7
Tomate		1,15²	0,70–0,90	0,6
c. Hortalizas– Familia de las Cucurbitáceas	0,5	1,00	0,80	
Melón	0,5	0,85	0,60	0,3
Pepino – Cosechado Fresco – Cosechado a Máquina	0,6 0,5	1,00 ² 1,00	0,75 0,90	0,3 0,3
Calabaza de Invierno		1,00	0,80	0,4
Calabacín (zucchini)		0,95	0,75	0,3
Melón dulce		1,05	0,75	0,4
Sandía	0,4	1,00	0,75	0,4
d. Raíces y Tubérculos	0,5	1,10	0,95	
Remolacha, mesa		1,05	0,95	0,4
Yuca o Mandioca – año 1 – año 2	0,3 0,3	0,80³ 1,10	0,30 0,50	1,0 1,5
Chirivía	0,5	1,05	0,95	0,4
Patata o Papa		1,15	0,754	0,6
Camote o Batata		1,15	0,65	0,4
Nabos (Rutabaga)		1,10	0,95	0,6
Remolacha Azucarera	0,35	1,20	0,70⁵	0,5

¹ Estos son valores generales de K_{c ini} considerando un manejo típico del riego y humedecimiento del suelo. Para humedecimientos frecuentes, tal como en el caso de riego por aspersión de alta frecuencia o lluvia diaria, estos valores pueden aumentar sustancialmente pudiendo acercarse a 1,0 a 1,2. El valor de K_{c ini} es una función del intervalo de humedecimiento y la tasa potencial de evaporación durante las etapas inicial y de desarrollo del cultivo, siendo estimado con mayor exactitud a través de las Figuras 29 y 30, o la Ecuación 7-3 del Anexo 7, o usando el coeficiente dual K_{cb ini} + Ke. Utilice el valor de K_{c ini} para el grupo cuando no aparece un valor de K_{c ini} para el cultivo.

² En algunas oportunidades, los Frijoles o judías, Guisantes, Leguminosas, Tomates, Pimientos y Pepinos son cultivados utilizando empalizadas que alcanzan los 1,5 a 2 metros de altura. En estos casos es necesario incrementar los valores de K. Para frijoles o judías verdes, pimentones y pepinos se puede asumir un valor de 1,15 y en el caso de los tomates, frijoles secos y los guisantes, de 1,20. Bajo esas condiciones también debe aumentarse el valor de h.

³ Los valores correspondientes a la etapa de mediados de temporada para la mandioca, asumen condiciones de no-estrés durante o después de la temporada lluviosa. Los valores de K_{efin} toman en cuenta el letargo durante la estación seca.

⁴ El valor de K_{c fin} para papas o patatas de ciclo largo con rotura de los estolones es alrededor de 0,40.

⁵ El valor de K_{c fin} corresponde a condiciones sin riego durante el último mes de la temporada productiva. El valor de K_{c fin} para la remolacha azucarera es mayor, hasta 1,0, cuando ocurra riego o lluvias significativas durante el último mes.

Capítulo 6 – ET_c – coeficiente único del cultivo (K_c)

111

CUADRO 12 (continuación)

Cultivo	K _{c ini} 1	$K_{c med}$	$K_{c fin}$	Altura Máx. Cultivo (h) (m)
e. Leguminosas (Leguminosae)	0,4	1,15	0,55	
Frijoles o judías, verdes	0,5	1,05²	0,90	0,4
Frijoles o judías, secos y frescos	0,4	1,15²	0,35	0,4
Garbanzo (chick pea)		1,00	0,35	0,4
Habas – Fresco – Seco/Semilla	0,5 0,5	1,15² 1,15²	1,10 0,30	0,8 0,8
Garbanzo hindú	0,4	1,15	0,35	0,8
Caupís (cowpeas)		1,05	0,60-0,356	0,4
Maní		1,15	0,60	0,4
Lentejas		1,10	0,30	0,5
Guisantes o arveja – Frescos – Secos/Semilla	0,5	1,15² 1,15	1,10 0,30	0,5 0,5
Soya		1,15	0,50	0,5-1,0
f. Hortalizas perennes (con letargo invernal v suelo inicialmente desnudo o con mantillo)	0,5	1,00	0,80	
Alcachofa	0,5	1,00	0,95	0,7
Espárragos	0,5	0,957	0,30	0,2-0,8
Menta	0,60	1,15	1,10	0,6-0,8
Fresas	0,40	0,85	0,75	0,2
g. Cultivos Textiles	0,35			
Algodón		1,15-1,20	0,70-0,50	1,2-1,5
Lino		1,10	0,25	1,2
Sisal [®]		0,4-0,7	0,4-0,7	1,5
h. Cultivos Oleaginosos	0,35	1,15	0,35	
Ricino		1,15	0,55	0,3
Canola (colza)		1,0-1,15°	0,35	0,6
Cártamo		1,0-1,15°	0,25	0,8
Sésamo (ajonjolí)		1,10	0,25	1,0
Girasol		1,0-1,15°	0,35	2,0
i. Cereales	0,3	1,15	0,4	
Cebada		1,15	0,25	1
Avena		1,15	0,25	1
Trigo de Primavera		1,15	0,25-0,410	1
Trigo de Invierno – con suelos congelados – con suelos no-congelados	0,4 0,7	1,15 1,15	0,25-0,4 ¹⁰ 0,25-0,4 ¹⁰	1
Maíz, (grano)		1,20	0,60,0,3511	2
Maíz, (dulce)		1,15	1,0512	1,5
Mijo		1,00	0,30	1,5
Sorgo – grano – dulce		1,00-1,10 1,20	0,55 1,05	1-2 2-4
Arroz	1,05	1,20	0,90-0,60	1

⁶ EL primer valor de K_{cfin} es cuando se cosecha fresco. El segundo valor es cuando se cosecha seco.

7 El valor de K_c para los espárragos permanece como K_{cini} durante la cosecha de los vástagos, debido a las condiciones de poca

cobertura vegetal. El valor de K_{cmed} es para después del re-crecimiento de la vegetación, después de terminada la cosecha de los vástagos.

 * El valor de K_c para sisal depende de la densidad de siembra y el manejo del agua (ósea, del estrés hídrico intencional).

⁹ Los valores menores son para cultivos de secano los cuales tienen una menor densidad de población vegetal.

¹⁰El valor mayor es para cultivos cosechados a mano.

¹¹El primer valor de K_{c fin} corresponde a los casos donde el cultivo se cosecharon gran humedad en el grano. El segundo valor de K_{c fin} es para cuando se cosecha después de un secado completo del grano en el campo (hasta alrededor de 18% de humedad, basado en materia húmeda).

¹²Si se cosecha en fresco para consumo humano. Usar el valor de K_{c fin} para maíz de campo si el maíz dulce es dejado madurar y secar en el campo.

Evapotranspiración del cultivo

CUADRO 12 (continuación)

Cultivo	K _{c ini} 1	\mathbf{K}_{cmed}	\mathbf{K}_{cfin}	Altura Máx. Cultivo (h) (m)			
j. Forrajes							
Alfalfa (heno) – efecto promedio de los cortes – períodos individuales de corte – para semilla	0,40 0,40 ¹⁴ 0,40	0,95 ¹³ 1,20 ¹⁴ 0,50	0,90 1,15¹⁴ 0,50	0,7 0,7 0,7			
Bermuda (heno) – efecto promedio de los cortes – cultivo para semilla (primavera)	0,55 0,35	1,00 ¹³ 0,90	0,85 0,65	0,35 0,4			
Trébol heno, Bersím – efecto promedio de los cortes – períodos individuales de corte	0,40 0,40 ¹⁴	0,90 ¹³ 1,15 ¹⁴	0,85 1,10 ¹⁴	0,6 0,6			
Rye Grass (heno) – efecto promedio de los cortes	0,95	1,05	1,00	0,3			
Pasto del Sudán (anual) – efecto promedio de los cortes – período individual de corte	0,50 0,50 ¹⁴	0,90 ¹⁴ 1,15 ¹⁴	0,85 1,10 ¹⁴	1,2 1,2			
Pastos de Pastoreo – pastos de rotación – pastoreo extensivo	0,40 0,30	0,85-1,05 0,75	0,85 0,75	0,15-0,30 0,10			
Pastos (césped, turfgrass) – época fría ¹⁵ – época caliente ¹⁵	0,90 0,80	0,95 0,85	0,95 0,85	0,10 0,10			
k. Caña de azúcar	0,40	1,25	0,75	3			
l. Frutas Tropicales y Árboles							
Banana – 1 [∝] año – 2 ^{do} año	0,50 1,00	1,10 1,20	1,00 1,10	3 4			
Cacao	1,00	1,05	1,05	3			
Café – suelo sin cobertura – con malezas	0,90 1,05	0,95 1,10	0,95 1,10	2-3 2-3			
Palma Datilera	0,90	0,95	0,95	8			
Palmas	0,95	1,00	1,00	8			
Piña ¹⁶ – suelo sin cobertura – con cobertura de gramíneas	0,50 0,50	0,30 0,50	0,30 0,50	0,6-1,2 0,6-1,2			
Árbol del Caucho	0,95	1,00	1,00	10			
Té – no sombreado – sombreado ¹⁷	0,95 1,10	1,00 1,15	1,00 1,15	1,5 2			
m. Uvas y Moras							
Moras (arbusto)	0,30	1,05	0,50	1,5			
Uvas – Mesa o secas (pasas) – Vino	0,30 0,30	0,85 0,70	0,45 0,45	2 1,5-2			
Lúpulo	0,3	1,05	0,85	5			

¹³Los valores de K_{c med} para cultivos destinados a heno son un promedio general que incluyen valores promedios de K_c para antes y después de los cortes. Este se aplica para el lapso que sigue al período de desarrollo inicial hasta el inicio de la etapa final de la temporada de crecimiento.

¹⁴Estos valores del coeficiente K_c para cultivos de heno se aplican inmediatamente después del corte; en cobertura completa; e inmediatamente antes del corte, respectivamente. La temporada de crecimiento se define como una serie de períodos individuales de corte (Figura 35).

¹⁵Variedades de pastos de temporada fría incluyen sitios cultivados densamente con bluegrass, ryegrass y fescue. Variedades de temporada cálida incluyen pastos tipo bermuda y St. Agoustine. El valor de 0,95 para pastos de época fría representa un 0,06 a 0,08 m de altura de corte, bajo condiciones normales de césped. Cuando se practica un manejo cuidadoso del agua y no se requiere de un crecimiento rápido, se puede reducir los valores de Kc para césped a 0,10.

¹⁶La planta de piña posee una muy baja transpiración debido a que la misma cierra sus estomas durante el día y los abre durante la noche. Por lo tanto la mayor parte de la ET_c en la piña esta constituida por la evaporación que ocurre en el suelo. El valor de $K_{cmed} < K_{cini}$ debido a que K_{med} ocurre en condiciones de completa cobertura del suelo, por lo que la evaporación en el suelo será menor. Los valores indicados asumen que un 50% de la superficie del suelo se encuentra cubierta por una cobertura de plástico negro y que el cultivo es regado a través de riego por aspersión. En el caso de riego por goteo por debajo de la cubierta plástica, los valores de K_c pueden ser reducidos a 0,10.

¹⁷Incluye el requerimiento de agua de los árboles bajo sombra.

112

Capítulo 6 – ET_c – coeficiente único del cultivo (K_c)

CUADRO 12 (continuación)

Cultivo	$K_{c ini}^{1}$	\mathbf{K}_{cmed}	K _{c fin}	Altura Máx. Cultivo (h) (m)
n. Árboles Frutales				
Almendras, sin cobertura del suelo	0,40	0,90	0,6518	5
Manzanas, Cerezas, Peras ¹⁹ – sin cobertura del suelo, con fuertes heladas – sin cobertura del suelo, sin heladas – cobertura activa del suelo, con fuertes heladas – cobertura activa del suelo, sin heladas	0,45 0,60 0,50 0,80	0,95 0,95 1,20 1,20	0,70 ¹⁸ 0,75 ¹⁸ 0,95 ¹⁸ 0,85 ¹⁸	4 4 4 4
Albaricoque, Melocotón o Durazno, Drupas ^{19, 20} – sin cobertura del suelo, con fuertes heladas – sin cobertura del suelo, sin heladas – cobertura activa del suelo, con fuertes heladas – cobertura activa del suelo, sin heladas	0,45 0,55 0,50 0,80	0,90 0,90 1,15 1,15	0,65 ¹⁸ 0,65 ¹⁸ 0,90 ¹⁸ 0,85 ¹⁸	3 3 3 3
Aguacate, sin cobertura del suelo	0,60	0,85	0,75	3
Cítricos, sin cobertura del suelo ²¹ – 70% cubierta vegetativa – 50% cubierta vegetativa – 20% cubierta vegetativa	0,70 0,65 0,50	0,65 0,60 0,45	0,70 0,65 0,55	4 3 2
Cítricos, con cobertura activa del suelo o malezas ²² – 70% cubierta vegetativa – 50% cubierta vegetativa – 20% cubierta vegetativa	0,75 0,80 0,85	0,70 0,80 0,85	0,70 0,80 0,85	4 3 2
Coníferas ²³	1,00	1,00	1,00	10
Kiwi	0,40	1,05	1,05	3
Olivos (40 a 60% de cobertura del suelo por el dosel) ²⁴	0,65	0,70	0,70	3-5
Pistachos, sin cobertura del suelo	0,40	1,10	0,45	3-5
Huerto de Nogal ¹⁹	0,50	1,10	0,6518	4-5

¹⁸Estos valores de K_{c fin} son representativos del K_c antes de la caída de las hojas. Después de la caída de las hojas, K_{c fin} \approx 0,20 para suelo descubierto y seco, o para cobertura muerta del suelo y K_{c fin} \approx 0,50 a 0,80 para cobertura activa y en desarrollo (consultar el Capítulo 11).

¹⁹Referirse a la Ec. 94, 97 o 98 y notas de pié de página 21 y 22, para estimar K_c para sitios con cultivos inmaduros.

²⁰La categoría de las drupas es aplicable a los melocotones o duraznos, albaricoques, peras, ciruelas y pacanas.

²¹Estos valores de K_c pueden ser calculados a partir de la Ec. 98 para K_{cmin} = 0,15 y K_{ctull} = 0,75, 0,70 y 0,75 para las etapas inicial, mediados de temporada y final de la temporada, y f_{cetf} = f_c donde f_c = fracción del suelo cubierto por el dosel del árbol (se asume que el sol se encuentra directamente por encima). Los valores tabulados corresponden a los indicados por Doorenbos y Pruitt (1977) y los obtenidos en mediciones recientes. El valor correspondiente a la etapa de mediados de temporada es menor que los correspondientes a las etapas inicial y final debido a los efectos del cierre estomático durante los períodos de máxima ET. Para climas húmedos y semi-húmedos, donde existe un menor control estomático por parte de los cítricos, se pueden incrementar los valores de K_{cinin} K_{ciniet}, y K_{cini} a 0, 1 - 0,2, según Rogers et *al*. (1983).

Para cobertura inactiva o moderadamente activa del suelo (cobertura activa del suelo implica cobertura verde y en crecimiento, con un valor de IAF > 2 a 3 aproximadamente), el valor de K_c deberá ser ponderado entre el valor de K_c correspondiente a la ausencia de cobertura del suelo y el valor de K_c para la cubierta activa del suelo, basando la ponderación en el grado de «verdosidad» y el área foliar aproximada de la cubierta del suelo.

²³Las coniferas presentan un control estomático significativo debido a su reducida resistencia aerodinámica. Los valores de K_c pueden ser fácilmente inferiores a los presentados, los cuales representan condiciones óptimas de humedecimiento en bosques extensos.

²²Estos valores de K_c pueden ser calculados como K_c = f_c K_{c.nc} + (1 - f_c) K_c cobertura donde K_{c.ns} es el valor de K_c de los cítricos que no poseen cobertura activa del suelo (calculado según la nota a pie de página 21); K_c cobertura es el valor de K_c para la cobertura activa del suelo (0,95) y f_c es definido en la nota a pie de página 21. Los valores tabulados corresponden con los indicados por Doorenbos y Pruitt (1977) y con mediciones mas recientes. Alternativamente, el valor de K_c para los cítricos con cobertura activa del suelo puede ser estimado directamente a través de la Ec. 98 considerando K_{c.min} = K_c cobertura. Para climas húmedos y semi húmedos donde existe un menor control estomático por parte de los cítricos, se pueden incrementar los valores de K_{c.min} y K_{c.min} un 0,1 - 0,2, según Rogers et *al.* (1983).

Evapotranspiración del cultivo

CUADRO 12 (continuación)

Cultivo K _{c ini} 1	\mathbf{K}_{cmed}	\mathbf{K}_{cfin}	Altura Máx. Cultivo (h) (m)
o. Humedales – clima templado			
Anea (Typha), Junco (Scirpus), muerte por heladas 0,30	1,20	0,30	2
Anea, Junco, sin heladas 0,60 Vegetación pequeña, sin heladas 1,05 Carrizo (Phragmites), con agua sobre el suelo 1,00 Carrizo, suelo húmedo 0,90	1,20 1,10 1,20 1,20	0,60 1,10 1,00 0,70	2 0,3 1-3 1-3
p. Especial			
Agua libre, < 2 m de profundidad o en climas sub-húmedos o trópicos	1,05	1,05	
Agua libre, > 5 m de profundidad, sin turbidez, clima templado	0,6525	1,2525	

²⁴Estos coeficientes son representativos de una cobertura del suelo entre 40 a 60%. Referirse a la Ec. 98 y notas a pie de página 21 y 22 para estimar el valor de K_c en sitios con vegetación inmadura. En España, Pastor y Orgaz (1994) encontraron los siguientes valores de K_c para huertos de olivos con un 60% de cobertura del suelo: 0,50, 0,50, 0,55, 0,50, 0,55, 0,50, 0,45, 0,45, 0,55, 0,60, 0,65, 0,50 para los meses Enero a Diciembre. Se pueden obtener estos coeficientes utilizando K_{c ini} = 0,65, K_{c med} = 0,45, y K_{c fin} = 0,65, considerando una duración de las etapas inicial, desarrollo, mediados de temporada y final de = 30,06 y 90 días respectivamente, y utilizando un valor de K_c durante el Invierno («fuera de temporada») desde Diciembre a Febrero = 0,50.

²⁵ Estos valores de K_c corresponden a aguas profundas en latitudes templadas donde se presentan cambios importantes de temperatura en el cuerpo de agua a través del año y donde tanto la evaporación inicial como la máxima son reducidas debido a la absorción de la energía radiante dentro del cuerpo de agua profunda. Durante los periodos de otoño e invierno (K_{c fm}), el calor es liberado por el cuerpo de agua, lo que genera una evaporación por encima de la evapotranspiración de referencia. Por lo tanto el valor de K_{c me} corresponde al período donde el cuerpo de agua esta ganando energía térmica y el valor de K_{c fm} se produce durante la liberación de energía térmica. Se deberá utilizar estos valores de K_c con suma precaución.

Fuentes principales: K_{cini}: Doorenbos y Kassam (1979); K_{cmed} y K_{cmi}: Doorenbos y Pruitt (1977); Pruitt (1986); Wright (1981, 1982), Snyder *et al.*, (1989)

114

transformation strategies.

APÉNDICE B: MACHINE LEARNING PARA ESTIMACIÓN DE EVAPOTRANSPIRACIÓN

Apéndice B.1. Listado código: predicción *ET* Apéndice B.2. Listado código: predicción *ET* con valor anterior Apéndice B.3. Listado código: MultiVariate time series forecasting

	Pinned	
	MachineLearning-Evapotranspiracion Aplicación de tenticas de análisis de datos y modelos de machine learning básico para la predicción de la exportanziación del cultimo.	Prediction-of-Trajectory-with-kalman-filter-and-open-cv
	● Jupyter Notebook ☆1 ¥1	☆ 10 ¥ 5
	MachineLearningMBTI-Myers-Briggs-Personality-Type	ComputerVision Some of my work in computer vision,
The second		Pythion
Pablo Saura pabsaura	G OneConference	
Data Science, Machine Learning , Big Data enthusiast. Developer of digital	lava -	

Apéndice B.1. Listado Código Predicción ET

Predicción-Evapotranspiracion

https://github.com/pabsaura/MachineLearning-Evapotranspiracion (https://github.com/pabsaura/MachineLearning-Evapotranspiracion) Author: Pablo Saura

Entender el caso de negocio

** En este caso el objetivo es ser capaz de dar una prescripcion de riego adecuada a una zona geográfica concreta. Esta información es muy útil para los agricultores, saber la cantidad exacta de agua que deben usar repercute en menos gastos por riego y maximización de la recolección.**

En concreto el principal foco de este trabajo es el de obtener valores futuros para e l valor de la evapotrans piración (https://es.wikipedia.org/wiki/Evapotranspiraci%C3%B3n,) la cual se define como, la pérdida de humedad de una superficie por evaporación directa junto con la pérdida de agua por transpiración de la vegetación. Este valor es importante para conocer las necesidades hídricas de las plantas y poder actuar de forma óptima.

Para ello vamos a utilizar variables climáticas obtenidas de estaciones meteorológicas y con ellas crear un programa capaz de predecir el valor deseado.

Predicción Evapotraspiración

In [1]:

M

```
import pandas as pd
import numpy as np
import matplotlib.pylab as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn import datasets, linear_model
from sklearn.metrics import mean_squared_error, r2_score
from sklearn import preprocessing
from math import sqrt
from datetime import datetime
%matplotlib inline
from matplotlib.pylab import rcParams
rcParams['figure.figsize'] = 15, 6
```

224

```
def standarizar_df(df_combinado):
    """
    from sklearn import preprocessing
    std_scale = preprocessing.StandardScaler().fit(df_combinado)
    df_std = std_scale.transform(df_combinado)
    return df_std
```

Entender el Dato

In [2]:

M

M

#data = pd.read_csv('layaradaFull.csv',sep=';',encoding='utf_16_le') #Version que se actua
data = pd.read_csv('layarada.csv',sep=';',encoding='utf_16_le') #Version con datos sin tr
data.tail(5)

Out[2]:

	IdProvincia	IdEstacion	Fecha	Año	Dia	Temp Media (ºC)	Temp Max (ºC)	Temp Mínima (ºC)	Humedad Media (%)	Humeda Max (%
6254	45	4	12/03/2018	2018	71	8,07	11,38	6,01	73,1	89
6255	45	4	13/03/2018	2018	72	9,74	14,1	5,67	82,5	98
6256	45	4	14/03/2018	2018	73	9,67	12,85	5,6	87,6	96
6257	45	4	15/03/2018	2018	74	7,2	10,91	4,67	80,3	95
6258	45	4	16/03/2018	2018	75	5,66	9,46	3,22	78,7	91

Este es el dataset que se obtiene al descargar directamente y sin tratar, por ello vamos a realizar la limpieza y preparación de los datos.

In [3]:

Out[3]:

Fecha	datetime64[ns]
Temp Media (ºC)	float64
Temp Max (ºC)	float64
Temp Mínima (ºC)	float64
Humedad Media (%)	float64
Humedad Max (%)	float64
Humedad Min (%)	float64
Radiación (MJ/m2)	float64
Precipitación (mm)	float64
PePMon	float64
EtPMon	float64
dtype: object	

Quitamos los datos que no nos aportan información como son "IdProvincia","IdEstacion" y "Año", "Dia", ya que la fecha la tenemos representada en el valor con mismo nombre. Transformamos los atributos al tipo que corresponde, la fecha a tipo **datetime** y los demás valores a **Float**, ya que al leerlos con **pd.read_csv** los toma como strings.

En las siguientes celdas imprimimos si hay valores nulos, los completamos con el valor anterior y cambiamos el índice del **dataframe** para que sean las fechas.

```
In [4]:
print(data.shape)
data.isnull().sum() # Buscamos si hay valores nulos
(6259, 11)
Out[4]:
                        0
Fecha
Temp Media (°C)
                       17
Temp Max (ºC)
                       27
Temp Mínima (ºC)
                       24
Humedad Media (%)
                       31
Humedad Max (%)
                       61
Humedad Min (%)
                       59
Radiación (MJ/m2)
                       15
Precipitación (mm)
                       21
                       69
PePMon
EtPMon
                       69
dtype: int64
```

```
In [5]:
```

M

M

data = data.fillna(method='ffill') # En el caso en que haya valores nulos los rellenamos co data.isnull().sum()

Out[5]:

Fecha Temp Media (°C) Temp Max (°C) Temp Mínima (°C) Humedad Media (%) Humedad Max (%) Humedad Max (%) Radiación (MJ/m2) Precipitación (mm) PePMon EtPMon dtype: int64

0

0

0

0

0 0

0

0

0

0

0

In [6]:	M
<pre>data = data.set_index('Fecha'); # Cambiar el indice por las fechas.</pre>	
In [7]:	M

```
unint(min(data["
```

```
print(min(data["EtPMon"]))
print(max(data["EtPMon"]))
print(data["EtPMon"].values.mean())
```

0.0 10.13 3.739669276242212

In [8]:

Mediante esta matriz de correlación podemos ver como se afectan las variables unas con otras, esta claro que variables relacionadas entre si como temperaturas y humedades cuentan con una gran correlación entre si, de igual manera temperaturas y humedades enfrentadas unas a otras vemos que tiene una correlacion pero a la inversa. Como también podiamos pensar la precipitación y la humedad tienen una alta correlación.

Seguimos con una gráfica de los valores que toma en la muestra la evapotranspiración, vemos que la muestra esta un poco desbalanceada.

In [9]:

sns.distplot(data["EtPMon"]);

In [10]:

data.head()

Out[10]:

	Temp Media (ºC)	Temp Max (ºC)	Temp Mínima (ºC)	Humedad Media (%)	Humedad Max (%)	Humedad Min (%)	Radiación (MJ/m2)	Precipitación (mm)	PePMc
Fecha									
2001- 01-01	9.36	11.89	7.64	86.0	95.9	77.70	3.77	6.8	3.2
2001- 01-02	7.78	10.22	6.11	78.8	92.8	62.15	6.92	7.2	3.5
2001- 01-03	7.90	9.70	6.18	82.3	90.3	72.50	3.77	3.4	0.5
2001- 01-04	10.25	12.36	8.69	76.3	88.5	63.95	6.32	0.0	0.0
2001- 01-05	13.12	15.54	8.83	85.7	94.9	77.90	3.75	4.6	1.5

In [11]:

data.dtypes

Out[11]:

Temp Media (≌C)	float64
Temp Max (ºC)	float64
Temp Mínima (ºC)	float64
Humedad Media (%)	float64

228

_

M

Humedad Max (%)	float64
Humedad Min (%)	float64
Radiación (MJ/m2)	float64
Precipitación (mm)	float64
PePMon	float64
EtPMon	float64
dtype: object	

In [12]:

normalized = data["EtPMon"]

In [13]:

a =preprocessing.normalize(normalized.values.reshape(-1,1),axis=0)

In [14]:

а

Out[14]:

```
array([[0.00279326],
[0.00386543],
[0.00310363],
...,
[0.00358328],
[0.00547367],
[0.00544545]])
```

In [15]:

```
x = np.random.normal(size=100)
x
```

Out[15]:

array([-0.57859104,	1.36186383,	0.84434163,	-1.17856551,	-1.57602479,
1.22068391,	0.39815283,	-0.48957559,	0.0389394 ,	0.44907381,
0.71759228,	-0.85032196,	-0.6210294 ,	1.31046115,	0.70353214,
-0.57706134,	0.66556247,	1.14713088,	0.59710703,	-1.06434347,
-0.16144445,	1.32562373,	1.13218257,	0.49521566,	0.92935291,
-1.78434219,	-0.93600034,	0.56216637,	0.98004462,	-0.80157944,
0.48244128,	-1.49022989,	-1.27750832,	1.17010228,	0.495333 ,
-0.00816577,	-2.57619557,	1.6078838 ,	1.39552804,	-0.86327435,
0.41078924,	1.17648301,	0.40825209,	-0.39305027,	-0.70162721,
-0.54303842,	0.27026479,	-0.86673847,	0.7845851 ,	0.97320612,
2.4351577 ,	0.18570305,	0.8304474 ,	-0.32913376,	0.27121839,
-1.6940521 ,	-1.54128092,	0.74887914,	0.08842262,	-0.09177862,
0.00326489,	-0.3670412 ,	0.04623815,	-0.34309822,	1.33178987,
0.71030153,	-0.54549293,	1.08144594,	0.12823736,	-1.85839157,
-1.72565122,	-1.14068771,	-0.88342219,	-1.10973956,	0.72907104,
0.40936436,	-0.47367066,	0.9252701 ,	-0.22292329,	0.18241893,
-0.48577331,	-0.20771926,	0.29194077,	0.04396721,	-1.40654965,
-0.08422067,	1.39346572,	0.39835781,	-0.64510379,	0.23862385,
0.6687393 ,	0.30813129,	-1.38989759,	1.87319524,	0.73333624,
0.78015387,	-0.62907569,	1.86833388,	0.52364044,	0.3124366])

M

M

In [16]:

sns.distplot(a);

In [17]:

M

M

```
# Datos de La evapotranspiracion normalizados
normalized = data["EtPMon"]
a =preprocessing.normalize(normalized.values.reshape(-1,1),axis=0)
sns.distplot(a);
```


Vemos que normalizando los datos se nos quedan los valores demasiado en los extremos. Por tanto no es una buena aproximación.

```
In [18]:
```

```
#Datos de La evapotranspiracion standarizados
normalized = data["EtPMon"]
a =standarizar_df(normalized.values.reshape(-1,1))
sns.distplot(a);
```


En cambio al estandarizar ponemos la media de los valores en 0(media=3,73), la proporción se mantiene a la original.

Podemos poner graficamente como varía la evapotranspiración en función de otras variables para entender de mejor manera los datos:

```
In [19]:
```

```
import matplotlib.pyplot as plt
plt.plot(data['EtPMon'])
plt.plot(data['Temp Media (°C)'])
plt.ylabel('')
plt.show()
```


M

M

.

M

.

```
In [20]:
```

```
import matplotlib.pyplot as plt
plt.plot(data['EtPMon'])
plt.plot(data['Humedad Media (%)'])
plt.ylabel('')
plt.show()
```


In [21]:

```
import matplotlib.pyplot as plt
plt.plot(data['EtPMon'][3500:])
plt.plot(data['Precipitación (mm)'][3500:])
plt.ylabel('')
plt.show()
```


Separación training-test

Mediante la función de la librería scikit-learn podemos crear las muestras para entrenamiento y test que despues pasaremos a los modelos

In [22]:

```
labels=data["EtPMon"]
dataAll=data.copy()
data =data.drop(["EtPMon"],axis=1);
X_train,X_test,Y_train,Y_test = train_test_split(data,labels,test_size=0.20,random_state=20
```

In [23]:

data.head(5)

Out[23]:

	Temp Media (ºC)	Temp Max (ºC)	Temp Mínima (ºC)	Humedad Media (%)	Humedad Max (%)	Humedad Min (%)	Radiación (MJ/m2)	Precipitación (mm)	PePMc
Fecha									
2001- 01-01	9.36	11.89	7.64	86.0	95.9	77.70	3.77	6.8	3.2
2001- 01-02	7.78	10.22	6.11	78.8	92.8	62.15	6.92	7.2	3.5
2001- 01-03	7.90	9.70	6.18	82.3	90.3	72.50	3.77	3.4	0.5
2001- 01-04	10 . 25	12.36	8.69	76.3	88.5	63.95	6.32	0.0	0.0
2001- 01-05	13.12	15.54	8.83	85.7	94.9	77.90	3.75	4.6	1.5

Primer modelo: Regresión Lineal

El primer modelo que vamos a crear es el de regresión lineal.

In [24]:	M
<pre>regr = linear_model.LinearRegression() regr.fit(X_train, Y_train);</pre>	
In [25]:	M
<pre>prediction = regr.predict(X_test)</pre>	
In [26]:	M
<pre>print('Coefficients: \n', regr.coef_)</pre>	
Coefficients: [0.02351795 0.02944625 0.07065135 -0.02510693 0.0007251 0.0025977 0.14838745 0.19778249 -0.28731524]	

M

In [27]:

Root Mean squared error: 0.55

In [28]:

print('Variance score: %.2f' % r2_score(Y_test, prediction))

Variance score: 0.95

In [29]:

aux=Y_test[:10]
Y_test[:10]

Out[29]:

Fecha 2017-01-09 1.32 5.35 2006-09-11 2010-07-11 8.19 2001-12-06 0.56 0.97 2010-12-17 2002-03-01 1.98 2016-10-07 4.14 2012-11-02 1.88 2014-09-30 3.32 2001-09-12 5.31 Name: EtPMon, dtype: float64

In [30]:

prediction[:10]

Out[30]:

```
array([1.91797581, 5.62152796, 7.96945251, 1.54844811, 1.31587586, 2.07937472, 5.34859495, 2.33213047, 4.25268386, 5.75878186])
```

In [31]:

```
aux=aux.reset_index()
aux= aux.drop(['Fecha'],axis=1)
```

234

M

M

M

M

```
In [32]:
```

```
plt.plot(prediction[:10])
plt.plot(aux)
plt.ylabel('Comparativa Predicción-Test')
plt.show()
```


Como vemos obtenemos un RMSE de 0.55 y una varianza del 95%, aunque no son unos datos magnificos nos sirven como primera aproximación para la predicción de los valoresS. e han puesto tambien las 10 últimas predicciones para comparar frente al test y ver cuanto es el error.

Estandarizando los datos

Tee	
In I	
- 11 - 1	

```
std_X_train = standarizar_df(X_train)
std_X_test = standarizar_df(X_test)
```

In [34]:

```
lm = linear_model.LinearRegression()
lm.fit(std_X_train, Y_train)
predicted_values = lm.predict(std_X_test)
```

In [35]:

Root Mean squared error: 0.56

M

M

M

In [36]:
print('Variance score: %.2f' % r2_score(Y_test, prediction))

Variance score: 0.95

En este ejemplo se usa una función para la estandarización de los datos y vemos que no difiere casi del resultado anterior.

M

M

M

In [37]:

```
from sklearn.model_selection import cross_val_score, cross_val_predict
lm2 = linear_model.LinearRegression()
scores = cross_val_score(lm2, data, labels, cv=100,scoring='neg_mean_squared_error')
sqrt(- scores.mean())
```

Out[37]:

0.6267493653747079

En este ejemplo utilizamos la crossvalidación como método evaluación.

Aumentando la dimensionalidad

Para este caso se prueba a aumentar las variables teniendo en cuenta hasta que días anteriores, y ver si de esta manera se puede reducir el error obtenido

In [38]:

```
data2=data.copy()
In [39]:
for i in range(6):
    data2['Temp Media (°C)'+str(-i)] = data['Temp Media (°C)'][i:]
    data2['Temp Max (°C)'+str(-i)] = data['Temp Max (°C)'][i:]
    data2['Temp Minima (°C)'+str(-i)] = data['Temp Minima (°C)'][i:]
    data2['Humedad Media (%)'+str(-i)] = data['Humedad Media (%)'][i:]
    data2['Humedad Max (%)'+str(-i)] = data['Humedad Max (%)'][i:]
    data2['Humedad Min (%)'+str(-i)] = data['Humedad Min (%)'][i:]
    data2['Radiación (MJ/m2)'+str(-i)] = data['Radiación (MJ/m2)'][i:]
    data2['Precipitación (mm)'+str(-i)] = data['Precipitación (mm)'][i:]
```

In [40]:

data2.head(10)

Out[40]:

	Temp Media (ºC)	Temp Max (ºC)	Temp Mínima (ºC)	Humedad Media (%)	Humedad Max (%)	Humedad Min (%)	Radiación (MJ/m2)	Precipitación (mm)	РеРМс
Fecha									
2001- 01-01	9.36	11.89	7.64	86.0	95.9	77.70	3.77	6.8	3.2
2001- 01-02	7.78	10.22	6.11	78.8	92.8	62.15	6.92	7.2	3.5
2001- 01-03	7.90	9.70	6.18	82.3	90.3	72.50	3.77	3.4	0.5
2001- 01-04	10.25	12.36	8.69	76.3	88.5	63.95	6.32	0.0	0.0
2001- 01-05	13.12	15.54	8.83	85.7	94.9	77.90	3.75	4.6	1.5
2001- 01-06	6.87	9.43	4.13	83.1	96.6	65.48	6.79	14.8	8.9
2001- 01-07	4.17	7.91	1.33	76.5	93.7	47.43	8.38	0.0	0.0
2001- 01-08	3.59	7.51	0.61	75.6	87.5	53.91	9.08	0.0	0.0
2001- 01-09	5.63	9.04	1.46	79.8	96.6	52.19	1.76	0.8	0.0
2001- 01-10	10.02	11.76	8.30	87.8	95.7	77.30	2.55	2.4	0.0

10 rows × 63 columns

In [41]:

```
data2 = data.drop(data.index[:5])
labels2 = labels.drop(labels.index[:5])
```

In [42]:

X2_train,X2_test,Y2_train,Y2_test = train_test_split(data2,labels2,test_size=0.20,random_st

M

237

M

In [43]:

```
regr = linear_model.LinearRegression()
regr.fit(X2_train, Y2_train)
prediction = regr.predict(X2_test)
print('Coefficients: \n', regr.coef_)
print("Root Mean squared error: %.2f"
        % sqrt(mean_squared_error(Y2_test, prediction)))
print('Variance score: %.2f' % r2_score(Y2_test, prediction))
```

```
Coefficients:

[ 0.01838224 0.0304453 0.0756795 -0.02503331 0.00102455 0.00254962

0.14829209 0.1775675 -0.25069667]

Root Mean squared error: 0.56

Variance score: 0.95
```

M

M

M

M

```
In [44]:
```

```
print(Y2_test[:10]); print(prediction[:10])
```

Fecha

2013-04-11	2.98		
2018-02-03	1.47		
2014-09-05	6.12		
2001-11-15	1.41		
2013-12-02	1.64		
2011-07-17	8.02		
2014-11-10	1.29		
2016-03-20	1.19		
2009-09-10	5.38		
2006-11-05	0.44		
Name: EtPMon,	dtype: float64		
[2.92913021 1.	73938684 6.47891945	0.47960108 1.9061955	7.2855427
1.97842847 1.	18099736 5.93509065	0.62604587]	

In [45]:

```
aux=Y2_test[:10]
```

In [46]:

```
aux=aux.reset_index()
aux= aux.drop(['Fecha'],axis=1)
```

```
In [47]:
```

```
plt.plot(prediction[:10])
plt.plot(aux)
plt.ylabel('Comparativa Predicción-Test')
plt.show()
```


Árboles de decisión

Otro modelo que podemos aplicar son los árboles de decisión y en concreto los de tipo regressor. Esperando conseguir una disminución del error frente a la regresión lineal. Como ya separamos los datos para las regresiones lineales vamos a ejecutar los mismos ejemplos pero con árboles ahora. En los códigos se han incluido tanto los decisión tree como los métodos ensemble RandomForest, comentando uno y descomentando el otro se puede ver la diferencia en la ejecucíon entre uno y otro.

Alta dimensionalidad

In [48]:

```
from sklearn.model_selection import cross_val_score
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
#regressor = DecisionTreeRegressor(random_state=0)
regressor = RandomForestRegressor(criterion='mse')
regressor.fit(X2_train,Y2_train)
modelPred = regressor.predict(X2_test)
meanSquaredError=mean_squared_error(Y2_test, modelPred)
print("MSE:", meanSquaredError)
rootMeanSquaredError = sqrt(meanSquaredError)
print("RMSE:", rootMeanSquaredError)
```

MSE: 0.2352016195043965 RMSE: 0.484975895797303

Datos sin tratar

In [49]:

```
#regressor = DecisionTreeRegressor(random_state=0)
regressor = RandomForestRegressor(criterion='mse')
regressor.fit(X_train,Y_train)
modelPred = regressor.predict(X_test)
meanSquaredError=mean_squared_error(Y_test, modelPred)
print("MSE:", meanSquaredError)
rootMeanSquaredError = sqrt(meanSquaredError)
print("RMSE:", rootMeanSquaredError)
```

MSE: 0.22151787539936102 RMSE: 0.4706568552558871

Estandarizando

In [50]:

```
#regressor = DecisionTreeRegressor(random_state=0)
regressor = RandomForestRegressor(criterion='mse')
regressor.fit(std_X_train,Y_train)
modelPred = regressor.predict(std_X_test)
meanSquaredError=mean_squared_error(Y_test, modelPred)
print("MSE:", meanSquaredError)
rootMeanSquaredError = sqrt(meanSquaredError)
print("RMSE:", rootMeanSquaredError)
```

```
MSE: 0.22145721964856233
RMSE: 0.4705924135051078
```

Cross-validation

240

M

In [51]:

```
regressor = RandomForestRegressor(criterion='mse')
scores = cross_val_score(regressor, data, labels, cv=10,scoring='neg_mean_squared_error')
print("RMSE:", sqrt(-scores.mean()))
```

RMSE: 0.48105364056499006

Reduciendo a variables solo de predicción (las que podemos encontrar en AEMET)

Como se trata de una predicción y la base de datos es a posteriori, vamos a realizar otra en la que solo tengamos los datos que se pueden obtener a futuro, para eso realizaremos la obtención de variables sobre la página de la AEMET.

Datos que puedo obtener de previsión en AEMET:

- Probabilidad de precipitación.
- Temperatura max, min.
- Humedad relativa max,min.
- Precipitacion

Conviertiendo la precipitacion a booleano

Como no podemos saber cuanta precipitacion de lluvia va a caer con certeza para un día en el futuro, vamos a modelar nuestros datos como un booleano el cual denotará si llovió ese día o no lo hizo.

In [52]:

```
elements = data['Precipitación (mm)'].values
elements_ok = [1 if element > 0 else 0 for element in elements]
data['Precipitación (mm)'] = elements_ok
```

Quitamos la radiación y la precipitación efectiva ya que son datos que no podemos conocer.

In [53]:

```
data_red = data.drop(['Radiación (MJ/m2)', 'PePMon'],axis=1);
X_train,X_test,Y_train,Y_test = train_test_split(data_red,labels,test_size=0.20)
```

M

M

М

In [54]:

```
data_red.head(5)
```

Out[54]:

	Temp Media (ºC)	Temp Max (ºC)	Temp Mínima (ºC)	Humedad Media (%)	Humedad Max (%)	Humedad Min (%)	Precipitación (mm)
Fecha							
2001- 01-01	9.36	11.89	7.64	86.0	95.9	77.70	1
2001- 01-02	7.78	10.22	6.11	78.8	92.8	62.15	1
2001- 01-03	7.90	9.70	6.18	82.3	90.3	72.50	1
2001- 01-04	10.25	12.36	8.69	76.3	88.5	63.95	0
2001- 01-05	13.12	15.54	8.83	85.7	94.9	77.90	1

Este sería el aspecto de nuestra nueva base de datos. Aplicamos los mismos modelos que antes sabiendo que el error será más grande al tener menos representatividad.

Regresión Lineal

In [55]:

```
regr = linear_model.LinearRegression()
regr.fit(X_train, Y_train)
prediction = regr.predict(X_test)
print("Root Mean squared error: %.2f"
        % sqrt(mean_squared_error(Y_test, prediction)))
print('Variance score: %.2f' % r2_score(Y_test, prediction))
```

Root Mean squared error: 0.79 Variance score: 0.90

Árboles de decisión

M

In [56]:

```
#regressor = DecisionTreeRegressor(random_state=0)
regressor = RandomForestRegressor(criterion='mse')
regressor.fit(X_train,Y_train)
modelPred = regressor.predict(X_test)
meanSquaredError=mean_squared_error(Y_test, modelPred)
print("MSE:", meanSquaredError)
rootMeanSquaredError = sqrt(meanSquaredError)
print("RMSE:", rootMeanSquaredError)
print('Variance score: %.2f' % r2_score(Y_test, modelPred)))
```

```
MSE: 0.563770608626198
RMSE: 0.750846594602518
Variance score: 0.91
```

Prediciendo el valor de Mañana

El objetivo al final es predecir el valor de evapotranspiración para el día siguiente, para ello hemos creado los modelos de aprendizaje. Por ello debemos acceder a la previsión meteorológica para el día que queremos predecir y pasarselo al modelo para que nos de el valor.

Esta obtención se ha realizado mediante scrapping de la web de la AEMET.

Web scrapping Aemet

In [57]:

```
from lxml import etree
doc = etree.parse('http://www.aemet.es/xml/municipios/localidad 45112.xml')
raiz=doc.getroot()
prediccion = raiz[4]
#dia = prediccion[1] # Para coger La prevision de mañana.
dia = prediccion[0] # Para coger la prevision de hoy.
fecha=dia.get('fecha')
temperatura=dia.find("temperatura")
probprecipitacion=dia.find("prob precipitacion")
temperaturaMax=float(temperatura.find("maxima").text)
temperaturaMin=float(temperatura.find("minima").text)
humedad=dia.find("humedad relativa")
humedadMax=float(humedad.find("maxima").text)
humedadMin=float(humedad.find("minima").text)
humedadMed=((humedadMax)+(humedadMin))/2
temperaturaMed=((temperaturaMax)+(temperaturaMin))/2
precipitacion= 0 if probprecipitacion.text == None else int(probprecipitacion.text)
precipitaciondummy = 1 if precipitacion > 60 else 0
print("Prevision: ",fecha)
print("Temperatura Max:",temperaturaMax)
print("Temperatura Min:",temperaturaMin)
print("Temperatura Med:",temperaturaMed)
print("Humedad Max:",humedadMax)
print("Humedad Min:",humedadMin)
print("Humedad Med:",humedadMed)
print("Precipitacion:",precipitaciondummy)
```

M

Prevision: 2020-04-19 Temperatura Max: 18.0 Temperatura Min: 9.0 Temperatura Med: 13.5 Humedad Max: 100.0 Humedad Min: 65.0 Humedad Med: 82.5 Precipitacion: 0

Guardamos los valores en una variable que le pasaremos al modelo.

In [58]:

```
import collections
d = pd.DataFrame.from_dict(collections.OrderedDict([(fecha,[temperaturaMed,temperaturaMax,t
d.dtypes
d = d.drop(['orient'], axis=1)
d = d[d.columns[::-1]].set_index('columns').T
d
```

Out[58]:

columns	Temp Media (ºC)	Temp Max (ºC)	Temp Minima (≌C)	Humedad Media (%)	Humedad Max (%)	Humedad Min (%)	Precipitación (mm)
2020-04- 19	13.5	18.0	9.0	82.5	100.0	65.0	0.0

In [59]:

```
# d = pd.DataFrame.from_items([(fecha,[temperaturaMed,temperaturaMax,temperaturaMin,humedaa
# d.dtypes
# d
```

In [60]:

```
regr = linear_model.LinearRegression()
regr.fit(X_train, Y_train)
prediction = regr.predict(d)
print("Prediccion de la evapotranspiracion de referencia para el dia",fecha,":",prediction[
```

Prediccion de la evapotranspiracion de referencia para el dia 2020-04-19 : 2.178651268421873

Para no saturar mucho este notebook, se ha realizado una última prueba teniendo en cuenta la evapotranspiración del día anterior.

Esta prueba se ha realizado en el notebook Prediccion-Evapotranspiracion Anterior el cual se encuentra en la misma carpeta. Link to Notebook (Prediccion-EvapotranspiracionAnterior.ipynb)

De forma anecdótica también intente seguir un tutorial sobre Time Series en bases de datos multivariable sin mucha fortuna. [MultiVariate time series forecasting] (MultiVariate time series forecasting.ipynb)

Bonus Track

Esta sección nos va a permitir la obtención periódica de los datos de las estaciones meteorológicas con previsión de ser ejecutado en un servidor cada día para la realización de la previsión con los datos actualizados.

M

M

М

Descargar automatica diaria del valor correcto de Evapotraspiracion con Selenium.

M

```
In [61]:
```

```
from selenium.webdriver.firefox.firefox_profile import FirefoxProfile
profile = FirefoxProfile ()
profile.set_preference("browser.download.folderList",2)
profile.set_preference("browser.download.manager.showWhenStarting",False)
profile.set_preference("browser.download.dir","c:\\Users\Pablo\Desktop\EntregaAnalisis-Pabl
profile.set_preference("browser.helperApps.neverAsk.saveToDisk","application/zip")
```

```
ModuleNotFoundError Traceback (most recent call last)
<ipython-input-61-7c02269f5307> in <module>
----> 1 from selenium.webdriver.firefox.firefox_profile import FirefoxProfil
e
2 profile = FirefoxProfile ()
3 profile.set_preference("browser.download.folderList",2)
4 profile.set_preference("browser.download.manager.showWhenStarting",F
alse)
5 profile.set_preference("browser.download.dir","c:\\Users\Pablo\Deskt
```

op\EntregaAnalisis-PabloSaura")

ModuleNotFoundError: No module named 'selenium'

```
In [62]:
                                                                                       M
from selenium import webdriver
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.support.ui import Select
import time
driver = webdriver.Firefox(firefox profile=profile) # Se crea La instancia de Firefox WebDr
driver.get("http://eportal.mapama.gob.es/websiar/SeleccionParametrosMap.aspx?dst=1")
driver.implicitly wait(5)
driver.maximize_window()
elem = Select(driver.find element by name("ctl00$ContentPlaceHolder1$DropDownListCCAA"))
elem.select_by_visible_text("Castilla-La Mancha")
time.sleep(2)
elem = Select(driver.find_element_by_name("ctl00$ContentPlaceHolder1$DropDownListProvincia"
elem.select_by_visible_text("Toledo")
elem = Select(driver.find element by name("ctl00$ContentPlaceHolder1$DropDownListEstacion")
elem.select_by_visible_text("Los Navalmorales")
time.sleep(1)
elem = driver.find element by name("ctl00$ContentPlaceHolder1$ButtonAgregar")
elem.click()
elem = driver.find_element_by_name("ctl00$ContentPlaceHolder1$CheckBoxVViento")
elem.click()
elem = driver.find_element_by_name("ctl00$ContentPlaceHolder1$CheckBoxListParametros$CheckB
elem.click()
elem = driver.find_element_by_name("ctl00$ContentPlaceHolder1$CheckBoxListParametros$CheckB
elem.click()
elem = driver.find_element_by_name("ctl00$ContentPlaceHolder1$CheckBoxListParametros$CheckB
elem.click()
elem = driver.find_element_by_name("ctl00$ContentPlaceHolder1$CheckBoxListParametros$CheckB
elem.click()
elem = driver.find element by name("ctl00$ContentPlaceHolder1$CheckBoxDViento")
elem.click()
elem = driver.find element by name("ctl00$ContentPlaceHolder1$btnConsultar")
elem.click()
driver.switch to.window(driver.window handles[1])
time.sleep(1)
content = driver.find_element_by_xpath('//*[@id="ContentPlaceHolder1_ExportarCSV"]')
content.click()
time.sleep(3) #Tiempo prudencial para que descarge
driver.quit() # Si usamos "quit" cerramos todo el navegador, no solo la página actual
   _____
ModuleNotFoundError
                                         Traceback (most recent call las
t)
<ipython-input-62-359cc2e98e52> in <module>
----> 1 from selenium import webdriver
```

- 2 from selenium.webdriver.common.keys import Keys
- 3 from selenium.webdriver.support.ui import Select

4 import time
5 driver = webdriver.Firefox(firefox_profile=profile) # Se crea la
instancia de Firefox WebDriver

ModuleNotFoundError: No module named 'selenium'

Descomprimiendo el archivo guardado y uniendolo al dataframe

In [63]:

M

```
import zipfile, os
with zipfile.ZipFile("InformeDatos.zip","r") as zip_ref:
    zip_ref.extractall(".")
path = '.'
for i in os.listdir(path):
    if os.path.isfile(os.path.join(path,i)) and 'T004' in i:
        file=i
os.rename(file, 'layaradaUpdate.csv')
os.remove("InformeDatos.zip")
```

```
FileNotFoundError Traceback (most recent call last)
<ipython-input-63-f5eccdbd9371> in <module>
    1 import zipfile, os
----> 2 with zipfile.ZipFile("InformeDatos.zip","r") as zip_ref:
    3 zip_ref.extractall(".")
    4
    5 path = '.'
```

```
~\Anaconda3\lib\zipfile.py in __init__(self, file, mode, compression, allowZ
ip64, compresslevel)
1205 while True:
1206 try:
-> 1207 self.fp = io.open(file, filemode)
1208 except OSError:
1209 if filemode in modeDict:
```

FileNotFoundError: [Errno 2] No such file or directory: 'InformeDatos.zip'

```
In [64]:
dataUpdate = pd.read csv('layaradaUpdate.csv',sep=';',encoding='utf 16 le' )
dataUpdate
FileNotFoundError
                                          Traceback (most recent call last)
<ipython-input-64-b4d7e624aefb> in <module>
----> 1 dataUpdate = pd.read csv('layaradaUpdate.csv',sep=';',encoding='utf
16_le' )
      2 dataUpdate
~\Anaconda3\lib\site-packages\pandas\io\parsers.py in parser_f(filepath_or_b
uffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, m
angle_dupe_cols, dtype, engine, converters, true_values, false_values, skipi
nitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_fil
ter, verbose, skip blank lines, parse dates, infer datetime format, keep dat
e_col, date_parser, dayfirst, cache_dates, iterator, chunksize, compression,
thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapec
har, comment, encoding, dialect, error_bad_lines, warn_bad_lines, delim_whit
espace, low memory, memory map, float precision)
    683
                )
    684
--> 685
                return _read(filepath_or_buffer, kwds)
    686
    687
            parser_f.__name__ = name
~\Anaconda3\lib\site-packages\pandas\io\parsers.py in _read(filepath_or_buff
er, kwds)
    455
    456
            # Create the parser.
--> 457
            parser = TextFileReader(fp or buf, **kwds)
    458
    459
            if chunksize or iterator:
~\Anaconda3\lib\site-packages\pandas\io\parsers.py in init (self, f, engi
ne, **kwds)
   893
                    self.options["has index names"] = kwds["has index names"
1
    894
                self._make_engine(self.engine)
--> 895
    896
    897
            def close(self):
~\Anaconda3\lib\site-packages\pandas\io\parsers.py in _make_engine(self, eng
ine)
   1133
            def _make_engine(self, engine="c"):
                if engine == "c":
   1134
-> 1135
                    self. engine = CParserWrapper(self.f, **self.options)
   1136
                else:
                    if engine == "python":
   1137
~\Anaconda3\lib\site-packages\pandas\io\parsers.py in init (self, src, **
kwds)
   1903
                    # if source is utf-16 plain text, convert source to utf-
8
   1904
                    if isinstance(src, str):
-> 1905
                        src = open(src, "rb")
   1906
                        self.handles.append(src)
   1907
                    src = UTF8Recoder(src, kwds["encoding"])
```

FileNotFoundError: [Errno 2] No such file or directory: 'layaradaUpdate.csv'

In [65]:

M

M

NameError: name 'dataUpdate' is not defined

In [66]:

```
dataUpdate = dataUpdate.set_index('Fecha');
dataUpdate = dataUpdate.fillna(method='ffill')
dataUpdate.dtypes
```

```
NameError Traceback (most recent call last)
<ipython-input-66-17c11a455700> in <module>
----> 1 dataUpdate = dataUpdate.set_index('Fecha');
        2 dataUpdate = dataUpdate.fillna(method='ffill')
        3 dataUpdate.dtypes
```

NameError: name 'dataUpdate' is not defined

In [67]:

```
dataFull=pd.concat([dataAll, dataUpdate])
dataFull=dataFull.drop_duplicates(keep='first')
dataFull.tail(20)
NameError Traceback (most recent call last)
<ipython-input-67-48a6b38dde87> in <module>
----> 1 dataFull=pd.concat([dataAll, dataUpdate])
2 dataFull=dataFull.drop_duplicates(keep='first')
3 dataFull.tail(20)
NameError: name 'dataUpdate' is not defined
```

In [68]:

```
dataFull.to_csv('layaradaFull.csv',sep=';',encoding='utf_16_le')
os.remove("layaradaUpdate.csv")
```

```
NameError: name 'dataFull' is not defined
```

Por último se modifica el archivo de donde se obtienen los datos. Se debe descomentar la linea donde se cargan los datos *losnavalmoralesFull* para poder realizar la actualización automática.

M

Apéndice B.2. Listado Código Predicción *ET* con Valor Anterior

Predicción de la Evapotranspiración utilizando el valor anterior

Este notebook se ha relaizado para intentar disminuir el error obtenido en el anterior, se prueban diferentes modelos de regesión lineal, árboles y redes neuronales, para ver como es el resultado.

En el mejor modelo obtenemos un RMSE de 0,54 y con el realizamos las predicciones a 5 días y guardamos los resultados para su posterior comprobación. Hay que tener en cuenta que las predicciones que se obtienen de la AEMET y con las cuales se hace la predicción varían con el resultado real, por tanto hay que tener en cuenta que ya partimos de un error a la hora de obtención de los datos, ya que es muy difícil la previsión exacta cuando hablamos de variables climáticas.

Aun así el objetivo de esta práctica era el de enfrentarse a un problema real y el resultado ha sido más que satisfactorio.

Por último comentar que las previsiones a 5 días se guardan en la carpetap redicciones (predicciones), y las previsiones acumuladas a un día se almacenan en el ficheroP rediccionesAcumulado.txt (PrediccionesAcumulado.txt)

M

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pylab as plt
from sklearn.model_selection import train_test_split
from sklearn import datasets, linear_model
from sklearn.metrics import mean_squared_error, r2_score
from math import sqrt
from datetime import datetime
%matplotlib inline
from matplotlib.pylab import rcParams
rcParams['figure.figsize'] = 15, 6
```

252
In [2]:

```
data = pd.read_csv('layaradaFull.csv',sep=';',encoding='utf_16_le' )
#data = pd.read_csv('layarada.csv',sep=';',encoding='utf_16_le' ) #Version con datos sin t
data.head(5)
```

Out[2]:

	Fecha	Temp Media (ºC)	Temp Max (ºC)	Temp Mínima (ºC)	Humedad Media (%)	Humedad Max (%)	Humedad Min (%)	Radiación (MJ/m2)	Precipitación (mm)	PeF
0	2001- 01-01	9.36	11.89	7.64	86.0	95.9	77.70	3.77	6.8	
1	2001- 01-02	7.78	10.22	6.11	78.8	92.8	62.15	6.92	7.2	
2	2001- 01-03	7.90	9.70	6.18	82.3	90.3	72.50	3.77	3.4	
3	2001- 01-04	10.25	12.36	8.69	76.3	88.5	63.95	6.32	0.0	
4	2001- 01-05	13.12	15.54	8.83	85.7	94.9	77.90	3.75	4.6	

In [3]:

data.tail(5)

Out[3]:

	Fecha	Temp Media (ºC)	Temp Max (ºC)	Temp Mínima (≌C)	Humedad Media (%)	Humedad Max (%)	Humedad Min (%)	Radiación (MJ/m2)	Precipitación (mm)
6261	2018- 04-06	12.49	17.95	7.67	70.0	87.3	51.29	10.96	0.98
6262	2018- 04-07	7.59	12.17	5.61	87.8	97.9	61.31	10.56	7.45
6263	2018- 04-08	8.48	12.84	5.41	80.8	97.3	55.71	18.20	0.59
6264	2018- 04-09	4.78	6.27	2.55	85.8	95.5	76.30	9.53	1.47
6265	2018- 04-10	5.32	8.74	3.02	88.9	95.1	75.70	5.18	8.82

M

In [4]:

M

M

Out[4]:

```
Temp Media (⁰C)
                      float64
                      float64
Temp Max (ºC)
Temp Mínima (ºC)
                      float64
Humedad Media (%)
                      float64
Humedad Max (%)
                      float64
Humedad Min (%)
                      float64
                      float64
Radiación (MJ/m2)
Precipitación (mm)
                      float64
                      float64
PePMon
                      float64
EtPMon
dtype: object
```

In [5]:

```
elements = data['Precipitación (mm)'].values
elements_ok = [1 if element > 0 else 0 for element in elements]
data['Precipitación (mm)'] = elements_ok
data['EtPMonAnterior'] = data['EtPMon']
data['EtPMonAnterior'][1:] = data['EtPMon'][0:-1]
labels=data["EtPMon"][1:]
data_red = data.drop(['Radiación (MJ/m2)','PePMon'],axis=1);
data_red.to_csv('layaradaFullEtOAnterior.csv',sep=';',encoding='utf_16_le')
data_red = data.drop(['Radiación (MJ/m2)','PePMon','EtPMon'],axis=1);
data_red = data_red.drop(data_red.index[0])
data_red.tail(3)
```

Out[5]:

	Temp Media (ºC)	Temp Max (ºC)	Temp Mínima (ºC)	Humedad Media (%)	Humedad Max (%)	Humedad Min (%)	Precipitación (mm)	EtPMonAnterior
Fecha								
2018- 04-08	8.48	12.84	5.41	80.8	97.3	55.71	1	1.76
2018- 04-09	4.78	6.27	2.55	85.8	95.5	76.30	1	2.56
2018- 04-10	5.32	8.74	3.02	88.9	95.1	75.70	1	1.26

Regresión Lineal

In [6]:

Root Mean squared error: 0.59 Variance score: 0.94

Elastic Net

In [7]:

M

M

М

```
from sklearn.linear_model import ElasticNet
regr = ElasticNet(random_state=0)
regr.fit(X_train, Y_train)
prediction = regr.predict(X_test)
print("Root Mean squared error: %.2f"
        % sqrt(mean_squared_error(Y_test, prediction)))
print('Variance score: %.2f' % r2_score(Y_test, prediction))
```

Root Mean squared error: 0.76 Variance score: 0.90

Ridge

In [8]:

```
from sklearn.linear_model import Ridge
clf = Ridge(alpha=1.0)
clf.fit(X_train, Y_train)
prediction = clf.predict(X_test)
print("Root Mean squared error: %.2f"
        % sqrt(mean_squared_error(Y_test, prediction)))
print('Variance score: %.2f' % r2_score(Y_test, prediction))
```

Root Mean squared error: 0.59 Variance score: 0.94

Lasso

255

In [9]:

```
regr = linear_model.Lasso(alpha=0.1)
regr.fit(X_train, Y_train)
prediction = regr.predict(X_test)
print("Root Mean squared error: %.2f"
        % sqrt(mean_squared_error(Y_test, prediction)))
print('Variance score: %.2f' % r2_score(Y_test, prediction))
```

Root Mean squared error: 0.60 Variance score: 0.94

Árboles de Decisión

In [10]:

M

M

```
from sklearn.model_selection import cross_val_score
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
#regressor = DecisionTreeRegressor(random_state=0)
regressor = RandomForestRegressor(criterion='mse')
regressor.fit(X_train,Y_train)
modelPred = regressor.predict(X_test)
meanSquaredError=mean_squared_error(Y_test, modelPred)
print("MSE:", meanSquaredError)
rootMeanSquaredError = sqrt(meanSquaredError)
print('RMSE:", rootMeanSquaredError)
print('Variance score: %.2f' % r2_score(Y_test, modelPred))
```

MSE: 0.3045675075818037 RMSE: 0.551876351714588 Variance score: 0.95

In [11]:

```
testplot = Y_test.reset_index()
testplot=testplot.drop(['Fecha'],axis=1);
modelPred2 = pd.DataFrame(modelPred)
```

Hyperparameters tunning

In [12]:

```
from sklearn.model_selection import cross_val_score, cross_val_predict
scores = cross_val_score(regressor, data_red, labels, cv=10,scoring='neg_mean_squared_error
sqrt(- scores.mean())
```

Out[12]:

0.5582225613650234

М

In [13]:

```
# plot
i= 1000
j= 1040
plt.plot(testplot[i:j])
plt.plot(modelPred2[i:j], color='red')
plt.show()
```


Redes Neuronales

```
In [14]:
```

```
from sklearn.neural_network import MLPRegressor
clf = MLPRegressor(
    hidden_layer_sizes=(10,), activation='relu', solver='adam', alpha=0.001, batch_size='a
    learning_rate='constant', learning_rate_init=0.01, power_t=0.5, max_iter=100000, shuffl
    random_state=9, tol=0.0001, verbose=False, warm_start=False, momentum=0.9, nesterovs_mo
    early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
clf.fit(X_train, Y_train)
modelPred = clf.predict(X_test)
meanSquaredError=mean_squared_error(Y_test, modelPred)
print("MSE:", meanSquaredError)
rootMeanSquaredError = sqrt(meanSquaredError)
print('Variance score: %.2f' % r2_score(Y_test, modelPred))
modelPred
```

M

```
MSE: 0.33348630545860153
RMSE: 0.5774827317406136
Variance score: 0.94
```

Out[14]:

array([1.75201713, 2.45056846, 5.44267015, ..., 5.03850336, 1.64076842, 3.56187022])

WebScrapping Aemet

In [15]:

```
from lxml import etree
doc = etree.parse('http://www.aemet.es/xml/municipios/localidad_45112.xml')
raiz=doc.getroot()
prediccion = raiz[4]
#dia = prediccion[1] # Para coger La prevision de mañana.
dia = prediccion[0] # Para coger La prevision de hoy.
fecha=dia.get('fecha')
temperatura=dia.find("temperatura")
probprecipitacion=dia.find("prob_precipitacion")
temperaturaMax=float(temperatura.find("maxima").text)
temperaturaMin=float(temperatura.find("minima").text)
humedad=dia.find("humedad relativa")
humedadMax=float(humedad.find("maxima").text)
humedadMin=float(humedad.find("minima").text)
humedadMed=((humedadMax)+(humedadMin))/2
temperaturaMed=((temperaturaMax)+(temperaturaMin))/2
precipitacion= 0 if probprecipitacion.text == None else int(probprecipitacion.text)
precipitaciondummy = 1 if precipitacion > 60 else 0
print("Prevision: ",fecha)
print("Temperatura Max:",temperaturaMax)
print("Temperatura Min:",temperaturaMin)
print("Temperatura Med:",temperaturaMed)
print("Humedad Max:",humedadMax)
print("Humedad Min:",humedadMin)
print("Humedad Med:",humedadMed)
print("Precipitacion:", precipitaciondummy)
```

Prevision: 2020-04-19 Temperatura Max: 18.0 Temperatura Min: 9.0 Temperatura Med: 13.5 Humedad Max: 100.0 Humedad Min: 65.0 Humedad Med: 82.5 Precipitacion: 0

#TOD0 Coger por indice

etAnterior = data['EtPMon'][-1]

In [16]:

M

Out[16]:

etAnterior

1.15

In [17]:

M

M

M

d = pd.DataFrame.from_items([(fecha,[temperaturaMed,temperaturaMax,temperaturaMin,humedadMe d.dtypes d

Out[17]:

	Temp Media (≌C)	Temp Max (ºC)	Temp Minima (ºC)	Humedad Media (%)	Humedad Max (%)	Humedad Min (%)	Precipitación (mm)	EtPMonAnterior
2020- 04-19	13.5	18.0	9.0	82.5	100.0	65.0	0	1.15

In [18]:

```
regressor = RandomForestRegressor(criterion='mse')
regressor.fit(X_train,Y_train)
prediction = regressor.predict(d)
print("Prediccion de la evapotranspiracion de referencia para el dia",fecha,":",prediction[
```

Prediccion de la evapotranspiracion de referencia para el dia 2020-04-19 : 1.6440000000000000

In [19]:

file = open("PrediccionesAcumulado.txt","a") file.write("Prediccion de la evapotranspiracion de referencia para el dia "+str(fecha)+"; ' file.write("\n"); file.close()

In [20]:

```
indice = d.index[0]
indice = "predicciones\\" + "prediccion" + indice + ".csv" #Windows
file = open(indice,"w")
file.write("Fecha;Temperatura Max;Temperatura Min;Temperatura Med;Humedad Max;Humedad Min;H
file.write(fecha+";")
file.write(str(temperaturaMax)+";")
file.write(str(temperaturaMin)+";")
file.write(str(temperaturaMed)+";")
file.write(str(humedadMax)+";")
file.write(str(humedadMin)+";")
file.write(str(humedadMed)+";")
file.write(str(precipitaciondummy)+";")
file.write(str(etAnterior)+";")
file.write(str(prediction[0]))
#file.write("Prevision: "+fecha+"\n")
#file.write("Temperatura Max: "+str(temperaturaMax)+"\n")
#file.write("Temperatura Min: "+str(temperaturaMin)+"\n")
#file.write("Temperatura Med: "+str(temperaturaMed)+"\n")
#file.write("Humedad Max: "+str(humedadMax)+"\n")
#file.write("Humedad Min: "+str(humedadMin)+"\n")
#file.write("Humedad Med: "+str(humedadMed)+"\n")
#file.write("Precipitacion: "+str(precipitaciondummy)+"\n")
#file.write("Evapotranspiracion del dia anterior: "+str(etAnterior)+"\n")
#file.write("Prediccion de la evapotranspiracion de referencia para el dia "+fecha+" : "+st
file.write("\n");
```

Test

М

In [21]:

```
from lxml import etree
doc = etree.parse('http://www.aemet.es/xml/municipios/localidad_45112.xml')
raiz=doc.getroot()
prediccion = raiz[4]
#dia = prediccion[1] # Para coger La prevision de mañana.
for i in range(5):
    dia = prediccion[i+1] # Para coger La prevision de hoy.
    fecha=dia.get('fecha')
    temperatura=dia.find("temperatura")
    probprecipitacion=dia.find("prob precipitacion")
    temperaturaMax=float(temperatura.find("maxima").text)
    temperaturaMin=float(temperatura.find("minima").text)
    humedad=dia.find("humedad_relativa")
    humedadMax=float(humedad.find("maxima").text)
    humedadMin=float(humedad.find("minima").text)
    humedadMed=((humedadMax)+(humedadMin))/2
    temperaturaMed=((temperaturaMax)+(temperaturaMin))/2
    precipitacion=int(probprecipitacion.text)
    precipitaciondummy = 1 if precipitacion > 60 else 0
    print("Prevision: ",fecha)
   print("Temperatura Max:",temperaturaMax)
print("Temperatura Min:",temperaturaMin)
print("Temperatura Med:",temperaturaMed)
    print("Humedad Max:",humedadMax)
    print("Humedad Min:",humedadMin)
    print("Humedad Med:",humedadMed)
    print("Precipitacion:", precipitaciondummy)
    print("Evapotranspiracion del dia anterior:",prediction[0])
    file.write(fecha+";")
    file.write(str(temperaturaMax)+";")
    file.write(str(temperaturaMin)+";")
    file.write(str(temperaturaMed)+";")
    file.write(str(humedadMax)+";")
    file.write(str(humedadMin)+";")
    file.write(str(humedadMed)+";")
    file.write(str(precipitaciondummy)+";")
    file.write(str(prediction[0])+";")
    #file.write("Prevision: "+fecha+"\n")
    #file.write("Temperatura Max: "+str(temperaturaMax)+"\n")
    #file.write("Temperatura Min: "+str(temperaturaMin)+"\n")
    #file.write("Temperatura Med: "+str(temperaturaMed)+"\n")
    #file.write("Humedad Max: "+str(humedadMax)+"\n")
    #file.write("Humedad Min: "+str(humedadMin)+"\n")
    #file.write("Humedad Med: "+str(humedadMed)+"\n")
    #file.write("Precipitacion: "+str(precipitaciondummy)+"\n")
    #file.write("Evapotranspiracion del dia anterior: "+str(prediction[0])+"\n")
    d = pd.DataFrame.from_items([(fecha,[temperaturaMed,temperaturaMax,temperaturaMin,humed
    d.dtypes
    d
    regr = linear_model.LinearRegression()
    regr.fit(X_train, Y_train)
    prediction = regr.predict(d)
    print("Prediccion de la evapotranspiracion de referencia para el dia", fecha, ":", predict
    print("\n")
   file.write(str(prediction[0]))
```

```
262
```

#file.write("Prediccion de La evapotranspiracion de referencia para el dia "+fecha+" :
file.write("\n")

file.close()

Prevision: 2020-04-20

Temperatura Max: 18.0 Temperatura Min: 8.0 Temperatura Med: 13.0 Humedad Max: 90.0 Humedad Min: 50.0 Humedad Med: 70.0 Precipitacion: 1 Evapotranspiracion del dia anterior: 1.644000000000000 Prediccion de la evapotranspiracion de referencia para el dia 2020-04-20 : 2.2157700560982776 Prevision: 2020-04-21 Temperatura Max: 16.0 Temperatura Min: 5.0 Temperatura Med: 10.5 Humedad Max: 85.0 Humedad Min: 60.0 Humedad Med: 72.5 Precipitacion: 1 Evapotranspiracion del dia anterior: 2.2157700560982776 Prediccion de la evapotranspiracion de referencia para el dia 2020-04-21 : 2.2112344772937895 Prevision: 2020-04-22 Temperatura Max: 20.0 Temperatura Min: 8.0 Temperatura Med: 14.0 Humedad Max: 85.0 Humedad Min: 40.0 Humedad Med: 62.5 Precipitacion: 0 Evapotranspiracion del dia anterior: 2.2112344772937895 Prediccion de la evapotranspiracion de referencia para el dia 2020-04-22 : 2.9143742472752723 Prevision: 2020-04-23 Temperatura Max: 20.0 Temperatura Min: 10.0 Temperatura Med: 15.0 Humedad Max: 75.0 Humedad Min: 45.0 Humedad Med: 60.0 Precipitacion: 0 Evapotranspiracion del dia anterior: 2.9143742472752723 Prediccion de la evapotranspiracion de referencia para el dia 2020-04-23 : 3.1847775834732253

Prevision: 2020-04-24

Temperatura Max: 22.0 Temperatura Min: 12.0 Temperatura Med: 17.0 Humedad Max: 80.0 Humedad Min: 45.0 Humedad Med: 62.5 Precipitacion: 0 Evapotranspiracion del dia anterior: 3.1847775834732253 Prediccion de la evapotranspiracion de referencia para el dia 2020-04-24 : 3.443272233204287

In [22]:

M

predicciones = pd.read_csv(indice,sep=';')
predicciones

Out[22]:

	Fecha	Temperatura Max	Temperatura Min	Temperatura Med	Humedad Max	Humedad Min	Humedad Med	Precipitacio
0	2020- 04-19	18.0	9.0	13.5	100.0	65.0	82.5	
1	2020- 04-20	18.0	8.0	13.0	90.0	50.0	70.0	
2	2020- 04-21	16.0	5.0	10.5	85.0	60.0	72.5	
3	2020- 04-22	20.0	8.0	14.0	85.0	40.0	62.5	
4	2020- 04-23	20.0	10.0	15.0	75.0	45.0	60.0	
5	2020- 04-24	22.0	12.0	17.0	80.0	45.0	62.5	

In []:

Apéndice B.3. Multivariate Time Series Forecasting

MultiVariate time series forecasting

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pylab as plt
from pandas import DataFrame
from pandas import concat
from numpy import concatenate
from sklearn.model_selection import train_test_split
from sklearn import datasets, linear_model
from sklearn.metrics import mean_squared_error, r2_score
from sklearn import preprocessing
from math import sqrt
from datetime import datetime
%matplotlib inline
from matplotlib.pylab import rcParams
rcParams['figure.figsize'] = 20, 20
```

```
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
```

Using TensorFlow backend.

In [2]:

```
data = pd.read_csv('layaradaFull.csv',sep=';',encoding='utf_16_le' )
#data = pd.read_csv('layarada.csv',sep=';',encoding='utf_16_le' ) #Version con datos sin t
```

In [3]:

H

М

```
In [1]:
```

```
import pandas as pd
import numpy as np
import matplotlib.pylab as plt
from pandas import DataFrame
from pandas import concat
from numpy import concatenate
from sklearn.model_selection import train_test_split
from sklearn import datasets, linear_model
from sklearn.metrics import mean_squared_error, r2_score
from sklearn import preprocessing
from math import sqrt
from datetime import datetime
%matplotlib inline
from matplotlib.pylab import rcParams
rcParams['figure.figsize'] = 20, 20
from keras.models import Sequential
```

```
from keras.layers import Dense
from keras.layers import LSTM
```

Using TensorFlow backend.

In [2]:

```
data = pd.read_csv('layaradaFull.csv',sep=';',encoding='utf_16_le' )
#data = pd.read_csv('Layarada.csv',sep=';',encoding='utf_16_Le' ) #Version con datos sin t
```

M

M

In [3]:

Tn	1 / 1	•
	141	

data.dtypes

Out[4]:

Temp Media (≌C)	float64
Temp Max (ºC)	float64
Temp Mínima (ºC)	float64
Humedad Media (%)	float64
Humedad Max (%)	float64
Humedad Min (%)	float64
Precipitación (mm)	int64
EtPMon	float64
dtype: object	

In [5]:

data.describe()

Out[5]:

	Temp Media (ºC)	Temp Max (ºC)	Temp Mínima (ºC)	Humedad Media (%)	Humedad Max (%)	Humedad Min (%)	Precipita (
count	6266.000000	6266.000000	6266.000000	6266.000000	6266.000000	6266.000000	6266.00
mean	15.172372	20.273345	10.220222	57.103334	74.801183	39.331165	0.24
std	7.982096	9.129646	6.737824	21.778811	19.985527	21.345818	0.43
min	-3.000000	-0.450000	-7.830000	11.610000	15.980000	5.060000	0.00
25%	8.470000	12.360000	4.860000	37.765000	60.132500	20.652500	0.00
50%	13.980000	19.035000	9.310000	58.060000	79.600000	35.550000	0.00
75%	22.110000	28.340000	15.810000	75.900000	92.075000	56.327500	0.00
max	36.070000	41.600000	28.300000	100.000000	100.000000	100.000000	1.00

267

M

In [6]:

```
values = data.values
# specify columns to plot
groups = [0, 1, 2, 3, 5, 6, 7]
i = 1
# plot each column
plt.figure()
for group in groups:
    plt.subplot(len(groups), 1, i)
    plt.plot(values[:, group])
    plt.title(data.columns[group], y=0.5, loc='right')
    i += 1
plt.show()
```


In [7]:

```
def series to supervised(data, n in=1, n out=1, dropnan=True):
    n_vars = 1 if type(data) is list else data.shape[1]
    df = DataFrame(data)
    cols, names = list(), list()
    # input sequence (t-n, ... t-1)
    for i in range(n_in, 0, -1):
        cols.append(df.shift(i))
        names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)]
    # forecast sequence (t, t+1, ... t+n)
    for i in range(0, n_out):
        cols.append(df.shift(-i))
        if i == 0:
            names += [('var%d(t)' % (j+1)) for j in range(n_vars)]
        else:
            names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)]
    # put it all together
    agg = concat(cols, axis=1)
    agg.columns = names
    # drop rows with NaN values
    if dropnan:
        agg.dropna(inplace=True)
    return agg
# Load dataset
# integer encode direction
encoder = preprocessing.LabelEncoder()
values[:,6] = encoder.fit transform(values[:,6])
# ensure all data is float
values = values.astype('float32')
# normalize features
# frame as supervised learning
reframed = series_to_supervised(values, 1, 1)
# drop columns we don't want to predict
reframed.drop(reframed.columns[[8,9,10,11,12,13,14]], axis=1, inplace=True)
print(reframed.head())
```

va	r1(t-1)	var2(t-1)	var3(t-1)	var4(t-1)	var5(t-1)	var6(t-1) \
1	9.3	36 11.	.89 7.	.64 86.000	000 95.9000	02 77.699997
2	7.7	78 10.	.22 6.	.11 78.800	003 92.8000	03 62.150002
3	7.9	90 9.	.70 6.	.18 82.300	003 90.3000	03 72.500000
4	10.2	25 12.	.36 8.	.69 76.300	003 88.5000	00 63.950001
5	13.1	L2 15.	.54 8.	.83 85.699	997 94.9000	02 77.900002
	var7(t-1	l) var8(t-	-1) var8(t))		
1	1.	.0 0.	.99 1.37	7		
2	1.	.0 1.	.37 1.16	0		
3	1.	.0 1.	.10 1.53	3		
4	0.	.0 1.	.53 1.33	1		
5	1.	.0 1.	.31 1.12	2		

In [8]:

```
# split into train and test sets
values = reframed.values
i=0
j=5000
k= 6278
train = values[i:j, :]
test = values[j:k, :]
# split into input and outputs
train_X, train_y = train[:, :-1], train[:, -1]
test_X, test_y = test[:, :-1], test[:, -1]
# reshape input to be 3D [samples, timesteps, features]
train_X = train_X.reshape((train_X.shape[0], 1, train_X.shape[1]))
test_X = test_X.reshape((test_X.shape[0], 1, test_Y.shape)
print(train_X.shape, train_y.shape, test_X.shape, test_Y.shape)
```

(5000, 1, 8) (5000,) (1265, 1, 8) (1265,)

In [9]:

M

```
# design network
model = Sequential()
model.add(LSTM(100, input_shape=(train_X.shape[1], train_X.shape[2])))
model.add(Dense(1))
model.compile(loss='mae', optimizer='adam')
# fit network
history = model.fit(train_X, train_y, epochs=1000, batch_size=72, validation_data=(test_X,
# plot history
```

```
- loss: 0.5158 - val_loss: 0.5083
Epoch 638/1000
 - 0s - loss: 0.5158 - val_loss: 0.5003
Epoch 639/1000
 - 0s - loss: 0.5160 - val_loss: 0.5101
Epoch 640/1000
 - 0s - loss: 0.5143 - val loss: 0.5019
Epoch 641/1000
 - 0s - loss: 0.5167 - val_loss: 0.5075
Epoch 642/1000
 - 0s - loss: 0.5174 - val loss: 0.5074
Epoch 643/1000
 - 0s - loss: 0.5157 - val loss: 0.5059
Epoch 644/1000
- 0s - loss: 0.5149 - val loss: 0.4978
Epoch 645/1000
- 0s - loss: 0.5171 - val_loss: 0.5147
Epoch 646/1000
 - 0s - loss: 0.5143 - val loss: 0.5128
```

In [10]:

```
rcParams['figure.figsize'] = 10, 5
plt.plot(history.history['loss'], label='train')
plt.plot(history.history['val_loss'], label='test')
plt.legend()
plt.show()
```


In [11]:

make a prediction
yhat = model.predict(test_X)
calculate RMSE
rmse = sqrt(mean_squared_error(yhat, test_y))
print('Test RMSE: %.3f' % rmse)

Test RMSE: 0.702

M

M

.

APÉNDICE C: PROCESAMIENTO DE IMÁGENES Satelitales para calcular *et*

Apéndice C.1. Obtención y procesamiento de Imágenes Satelitales Apéndice C.2. Obtención del *NDVI*

Apéndice C.1. Obtención y Procesamiento de Imágenes Satelitales

Las opciones que tenemos para descargar imágenes satelitales son varias. En este apéndice expondremos algunas de ellas basadas en software libre, disponible en la Web.

Landsat es una constelación de satélites (Land = Tierra y Sat = satélite) que se integraban en la primera misión de EE. UU. para el monitoreo de los recursos terrestres. Las imágenes Landsat están compuestas por 7 u 8 bandas espectrales, especialmente elegidas para el monitoreo de la vegetación, aplicaciones geológicas y estudio de los recursos naturales. Estas bandas pueden combinarse generando nuevas imágenes que incrementan notablemente sus aplicaciones.

Especial mención merece el satélite Landsat 8, que fue lanzado al espacio en agosto de 2012, por sus 11 bandas, las mismas que brindan amplias posibilidades de combinación permitiendo generar gran cantidad de información asociada. Entre los más utilizados tenemos:

1.° Visores LandsatLook y Sentinel2Look

LandsatLook Viewer es una herramienta prototipo que ha sido desarrollada para permitir una rápida visualización en línea y acceso a los archivos de imágenes de USGS Landsat, la pantalla principal se muestra en la figura.

Figura C.1.1.

We welcome feedback and input for future versions of this Viewert Please provide your comments or suggestions

Este visor nos permite:

- Explorar de forma interactiva, en resolución completa, el archivo Landsat y directamente desde un navegador web común.

- Búsqueda de imágenes Landsat específicas según el área de interés, fecha de adquisición o cobertura de nubes.
- Comparar las características de la imagen y los cambios a través del tiempo.
- Mostrar capas de información de mapas configurables en combinación con las imágenes del Landsat.
- Creación de imágenes personalizadas y exportación como un simple archivo gráfico.
- Búsqueda por dirección o lugar, o hacer *zoom* en un punto, cuadro delimitador, Teselas Sentinel-2 o Landsat WRS-1 o WRS-2 Ruta / Fila.
- Generación y descarga de animaciones de vídeo de las imágenes más antiguas a las más recientes que se muestran en el visor.

2.° Landsat Viewer

Landsat Viewer es un explorador de imágenes por satélite para teledetección. En la Figura C.1.2. se muestra su pantalla principal. Se trata de una aplicación desarrollada por EOS DATA ANALYTICS, INC. cuyas ventajas son:

- A partir de este portal web no es necesario descargar una imagen Landsat 8 completa.
- No es necesario utilizar un *software* especial para abrirla y realizar la combinación de bandas entre sí.
- Es gratis.
- Permite descargar las imágenes.
- Podemos filtrar imágenes por diferentes criterios, principalmente por año, mes, porcentaje de nubosidad y elevación solar.

Figura C.1.2. Pantalla principal Landsat Viewer

Este servicio nos ofrece la posibilidad de obtener diferentes combinaciones de bandas, como una imagen pancromática, falso color, infrarrojo cercano, agricultura, tierra/agua, análisis de vegetación.

3.° Libra

Otra opción es utilizar Libra, un navegador de imágenes creado por Astro Digital, *open source*, que nos permite descargar todo el rango de bandas de Landsat 8. En la Figura C.1.3. se muestra la pantalla principal de la plataforma Libra.

Figura C.1.3. Pantalla principal de la plataforma Libra

4.° Earth Explorer

También es interesante Earth Explorer del Servicio Geológico de los Estados Unidos: http://earthexplorer.usgs.gov/, en el que se puede introducir diferentes criterios de búsqueda (fechas, porcentaje de nubes, path/row, sensor, etc.) **(Figura C.1.4.)**. Incluso se puede realizar descargas masivas de imágenes mediante la aplicación bda, disponible en la página.

Figura C.1.4. Pantalla principal de Earth Explorer

5.° Semi-Automatic Classification Plugin

En QGIS tenemos el plugin "Semi-Automatic Classification Plugin" para la clasificación supervisada; diseñado para agilizar el procesamiento de imágenes de teledetección multiespectrales e hiperespectrales. Ofrece un conjunto de herramientas para la descarga de imágenes Landsat, Sentinel, MODIS, etc., además, preprocesamiento y posprocesamiento. El aplicativo se muestra según la Figura C.1.5.

Figure C.1.5. Control of the degree of the degree of the degree of the supervised classification of remote sensing images, providing todas

6.° Global Land Cover Facility (GLCF)

Permite descargar imágenes Landsat de forma gratuita desde Global Land Cover Facility (GLCF) de la Universidad de Maryland **(Figura C.1.6.)**. El GLCF es un centro que se encarga del estudio de la cubierta vegetal a través de imágenes de satélite, analizando los cambios tanto locales como globales.

Figura C.1.6. Global Land Cover Facility (GLCF)

7.° Descarga de Imágenes LANDSAT

Utilizando la plataforma Libra, descargaremos la imagen Landsat 8 en la zona de interés, para ello buscamos la fecha de interés y precisamos la imagen requerida **(Figura C.1.7.)**:

Figura C.1.7. Selección de imágenes para descarga

Escogimos la imagen del día 15 de marzo de 2015. Luego seleccionamos las bandas que deseamos trabajar. En este caso nos interesa la banda 4 (red) y la banda 5 (*near infrared*). Estas bandas nos servirán para la determinación del *NDVI*. En la Figura C.1.8. se muestra la pantalla para la selección de las bandas a descargar.

Advanced Download Choose individual satellite bands to download. B1 - Coastal aerosol **B7** - Shortwave Infrared 2 B2 - Blue **B8** - Panchromatic B3 - Green **B9 - Cirrus** B4 - Red B10 - Thermal Infrared 1 **B5** - Near Infrared B11 - Thermal Infrared 2 B6 - Shortwave Infrared 1 **BQA - Quality Assessment** Urban False True Color: 4,3,2 NDVI: 5,4 Color: 7,5,2 **Download Bands**

Figura C.1.8. Bandas a descargar

De esta forma disponemos de dos bandas de la imagen satelital. Luego utilizaremos el programa libre QGIS para la visualización de dichas imágenes (B4 y B5).

8.° Visualización en QGIS

En el programa libre QGIS **(Figura C.1.9.)** ubicamos la ruta de archivos en la carpeta donde descargamos las imágenes y hacemos doble clic sobre ellas. En esta primera imagen mostramos la banda 5 que corresponde al Near Infrared. En la Figura C.1.10. se muestra la banda 4 que corresponde al *red*.

Figura C.1.9. Entorno de trabajo QGIS

Q *Proyecto sin título - QGIS

Apéndice C.2. Obtención del NDVI

Las opciones que tenemos para procesar las imágenes son diversas; por ejemplo, podemos usar QGIS, ARCGIS, MATLAB, Phyton en plataforma Jupyter, entre otras. El cálculo de *NDVI* se resume en la Figura C.2.1. usando imágenes Landsat 8.

Procesamiento en QGIS

El programa libre QGIS nos permite obtener el *NDVI*. Tenemos dos alternativas, la primera consiste en utilizar la caja de herramientas de procesos \rightarrow SAGA \rightarrow Image analysis \rightarrow vegetation index (slope based).

En la Figura C.2.2. se muestra el ingreso de los archivos para las bandas correspondientes 5 y 4, así como los parámetros requeridos.

Q Vegetation index (slope based)		×
Parámetros Registro		
Near Infrared Reflectance		-
🚰 Layarada_B5 [EPSG:32619]		
Red Reflectance		
🚰 Layarada_B4 [EPSG:32619]	-	
Soil Adjustment Factor		
0.500000		0
Difference Vegetation Index		
(Goardar en archive tempezal)		- 101
 Abrir el archivo de salida después de ejecutar el algoritmo Normalized Difference Vegetation Index 		
(Gizardar en archivo temporal)		
 Abrir el archivo de salida después de elecutar el algoritmo Ratio Vegetation Index 		
(Guardar en architer tringenti)		
0%6		lennelati
Ejecutar como proceso por lates	Ejecutar	Cerrar

Figura C.2.2.

Ingreso de bandas 5 y 4

Nótese que hemos renombrado los archivos para facilitar su identificación: Layarada5.tiff para la banda 5 que corresponde al Near Infrared y Layarada4.tiff para la banda 4 correspondiente al *red.* Luego de ingresar correctamente las bandas, procesamos. La Figura C.2.3. muestra el procesamiento de las bandas para cálculo de *NDVI* y la Figura C.2.4., el resultado del mismo.

Figura C.2.3. *Procesamiento del NDVI*

Vegetation i	ndex (slope	based)		×
Parámetros	Registro			
Version de OGE Revision de Dui Version de OL Version de OED Version de OED Version de OED Version de REO Procesando alge Algoritmo Ve Parametros de f I 'DI'yarad 'RVI': 'TE 'TVI': 'TE io gdal 0 - 676fidd10ef io_gdal 0 - 46804cb36f de Data/Loo 876fidd10ef processing_ AppBata/Loo NDVIyarada. 305edee221	S E122-Bni hou de QGIS 5112 L'3.0.4 S 38.1:24 S 38.1:24	<pre>Wedl Batth33634 F4Dnary 108h,2020 Nex (slope based)'comenzando [_OUTFUT', 'DVI': 'TEMPORARY_OUTFUT', 'NDVI': 'D:/yaradal/NDVIyarada.sds ia_B5.tif', 'NRVI': 'TEMPORARY_OUTFUT', 'SOII': 'D:/yaradal/Layarada_B4.t TTUD', 'SAVI': 'TEMPORARY_OUTFUT', 'SOII': 'D.S, 'TTVI': 'TEMPORARY_OUT TTUD', 'SAVI': 'TEMPORARY_OUTFUT', 'SOII': 'D.S, 'TTVI': 'TEMPORARY_OUT TTUD'') 1 -RESAMPLING 3 -GRIDS "C:/Users/HD/AppData/Local/Temp/processing_vYquvn/ lada169/c176/LayaradaB5.sgrd" -TILES "D:/yaradal/Layarada_B5.tif" 1 -RESAMPLING 3 -GRIDS "C:/Users/HD/AppData/Local/Temp/processing_vYquvn/ 1005d5317d67/LayaradaB4.sgrd" -FILES "D:/yaradal/Layarada_B4.tif" 1 -RESAMPLING 3 -GRIDS "C:/Users/HD/AppData/Local/Temp/processing_vYquvn/ 1004c533f64d548591c467/LayaradaB4.sgrd" -SIL D.5 -DU' "C:/Users/HD/AppData/Local/Temp/ processing_vYquvn/fD0ce3a0203147b58abdd8b4fc68fs/DVI.edat" -NDVI "D:/yara 'C:/User:/RD/AppData/Local/Temp/processing_vYquvn/ 16792031f582/BVI.edat" -NEVI "C:/Users/HD/AppData/Local/Temp/processing_vYquvn/ 16792081f582/BVI.edat" -NEVI "C:/Users/HD/AppData/Local/Temp/ 16792031f582/BVI.edat" -NEVI "C:/Users/HD/AppData/Local/Temp/ 16792031f582/BVI.edat" -NEVI "C:/Users/HD/AppData/Local/Temp/ 16792031f582/BVI.edat*" -NEVI "C:/Users/HD/AppData/Local/Temp/ 16792031f582/BVI.edat*" -NEVI "C:/Users/HD/AppData/Local/Temp/ 16792031f582/BVI.edat*" -NEVI "C:/Users/HD/AppData/Local/Temp/ 16792031f582/BVI.edat** -NEVI."C:/Users/HD/AppData/Local/Temp/ 16792031f582/BVI.edat** -NEVI."C:/Users/HD/AppData/Local/Temp/ 16792031f582/BVI.edat** -NEVI."C:/Users/HD/AppData/Local/Temp/ 16792031f582/BVI.edat** -NEVI."C:/Users/HD/AppData/Local/Temp/ 16792031f582/BVI.edat** -NEVI."C:/Users/HD/AppData/Local/Temp/ 16792031f582/BVI.edat** -NEVI."C:/Users/HD/AppData/Local/Temp/ 16792031f582/BVI.edat** -NEVI."C:/Users/HD/AppCata/Local/Temp/ 16792031f582/BVI.edat** -NEVI."C:/Users/HD/AppCata/Local/Temp/ 16792031f582/BVI.edat** -NEVI."C:/Users/HD/AppCata/Local/Temp/ 16792031f582/BVI.edat** -NEVI."C:/Users/HD/AppCata/Local/Temp/Processing 160000000000000</pre>	t', 'NIR' if', por', yoyguon/ po/ dal/	
		0%	Cancela	à e
Ejecutar como p	roceso por lo	tes Ejeci	itar Cerran	r

Figura C.2.4. *Resultado de procesamiento del NDVI*

La imagen procesada de *NDVI* **(Figura C.2.5.)** podemos visualizarla de mejor forma cambiando la paleta de colores, ya sea en forma automática o manual, así como definir la cantidad de intervalos que deseamos visualizar. No olvidemos verificar que el valor del *NDVI* varía de -1 a +1.

Figura C.2.5. Ejemplo de cálculo de NDVI usando cambio de colores

Procesamiento con MATLAB

En código computacional MATLAB también es posible procesar imágenes satelitales y determinar el *NDVI*. Usaremos el siguiente código:

```
close all; clear; clc;
addpath('yarada1/');
I = imread ('Layarada_B5.tif');
i=single(I);
figure(1);
imshow(i,'DisplayRange',[0 65535]);
figure(2);
I2 = imread ('Layarada_B4.tif');
i2=single(I2);
imshow(i2,'DisplayRange',[0 65535]);
NDVI= (i(:,:) - i2(:,:))./(i(:,:) + i2(:,:));
figure(3)
imshow(NDVI,'DisplayRange',[-1 1])
title('Normalized Difference Vegetation Index (NDVI)')
```

La ejecución del programa MATLAB muestra la imagen Layarada_B5.tif (*NIR*), Layarada_B4.tif (*RED*) y el *NDVI*. Nótese que el procesamiento de *NDVI* se da; *NDVI = (NIR-RED/NIR+RED)*. En la Figura C.2.6. se muestran las bandas 4 y 5. En la Figura C.2.7. se aprecia el resultado que arroja MATLAB sobre el cálculo de *NDVI*.

Figura C.2.6. Layarada_B5.tif (NIR), Layarada_B4.tif (RED)

Figura C.2.7. *Resultado NDVI*

APÉNDICE D: CÓDIGO PYTHON PARA CÁLCULO DE EVAPOTRANSPIRACIÓN REAL TOTAL DIARIA

Apéndice D.1. Computing daily ET for a single Landsat image Apéndice D.2. Computing a daily ET image collection from Landsat image collection Apéndice D.3. Computing annual ET from a collection

Popular repositories	
ficod-fill	et-demands.
Python Floating Point Flood Fill Algorithm	Crop E7 Demands Model
● Python ☆6 ¥3	●Python ☆4 ¥3
ee-tools	RefET-GEE
Earth Engine Tools	ASCE Standardized Reference Exapotranspiration Functions for Google Earth Engine (GEE)
• Python # 2 \$2	● Python 公 2 ¥ 1
colorbar Forked from timectimidt/colorbai	zeph Forked from DRI-AIC/zeph
Dynamically updatable color bass for use with d3 ja	geographic anays in python
🔷 lavaScript 🛛 🛱 1	Python
	Popular repositories ficod-fill Pythen Floating Point Fload Fill Algorithm ● Pythen ☆ 6 ♀ 3 ee-tools Earth Engine Taols ● Python ☆ 2 ♀ 2 Colorbar Porked from pre-chmidy/colorbar Dynamically updatable color bars for use with d3 is ● lavsScript ☆ 1

Apéndice D.1. Computing Daily *ET* for a Single Landsat Image

OpenET SSEBop

Image Class Property/Method Example

This example shows how to instantiate the model Image class for a single Landsat image using the ".from_landsat_c1_toa()" helper method. This example also shows how to get the model variables.

Setup

Install Earth Engine

In [1]: # Import the Earth Engine package, installing it first, if needed.
try:
 import ee
except ModuleNotFoundError:
 [pip install earthengine-api
 import ee

Install SSEBop

```
In [2]: # Import the SSEBop package, installing it first, if needed.
try:
    import openet.ssebop as model
except ModuleNotFoundError:
    ipip install openet-ssebop
    import openet.ssebop as model
```

Package Imports

In [3]: import pprint

from IPython.display import Image
Initialize Earth Engine

```
In [4]: # Initialize the Earth Engine package, initiating the authentication
flow if needed.
try:
    ee.Initialize(use_cloud_api=True)
except ee.EEException:
    ee.Authenticate()
    ee.Initialize(use_cloud_api=True)
```

Analysis

Landsat 8 Collection 1 TOA Image

Out[7]:

In [8]:	# Build the SSEBop object from the Landsat image	
	<pre>model_obj = model.Image.from_landsat_c1_toa(</pre>	
	landsat_img,	
	<pre># et_reference_source='projects/climate-engine/cimis/daily',</pre>	
	<pre># et_reference_band='ETr_ASCE',</pre>	
	et_reference_source='IDAHO_EPSCOR/GRIDMET',	
	et_reference_band='etr',	
	et_reference_factor=0.85,	
	et_reference_resample='nearest',	
)	

NDVI

Out[9]:

ET fraction

Reference ET

Out[12]:

"Calculate" Method

Return a multiband image of the model variables

Out[13]:

In []:

Apéndice D.2. Computing a Daily *ET* Image Collection From Landsat Image Collection

OOpenET SSEBop

Image Mapping Examples

This example shows how you could build an ET image collection by mapping the model image class over a GEE Landsat image collection.

Input parameters

In [3]:

```
collection_id = 'LANDSAT/LC08/C01/T1_T0A'
et_reference_source = 'projects/climate-engine/cimis/daily'
et_reference_band = 'ETr_ASCE'
et_reference_factor = 1.0
et_reference_resample = 'nearest'
# et_reference_source = 'IDAHO_EPSCOR/GRIDMET'
# et_reference_band = 'etr'
# et_reference_factor = 0.85
# et_reference_resample = 'nearest'
# Date range you want to aggregate ET over
# End date is inclusive
start_date = '2017-06-01'
end_date = '2017-09-01'
test_point = ee.Geometry.Point(-121.5265, 38.7399)
# Hard code the study area and CRS
study_area = ee.Geometry.Rectangle(-122.00, 38.50, -121.00, 39.0)
study region = study area.bounds(1, 'EPSG:4326').coordinates().getInfo()
study_crs = 'EPSG:32610'
```

Landsat 8 Collection 1 TOA Images

Build the input image collection

Out[5]:

In [6]:

landsat_crs = ee.Image(landsat_coll.first()).select('B3').projection().getInfo()['crs'] landsat_region = ee.Image(landsat_coll.first()).geometry().bounds(1, 'EPSG:4326').coordinat # Landsat_dt = ee.Date(Landsat_img.get('system:time_start'))

ET Image Collection

In [7]:

```
def compute_et(image):
    """Return an ET image for each input Landsat 8 C1 TOA image
    Since etr parameters are not set, this will default to using GRIDMET ETr
    """
    return model.Image.from_landsat_c1_toa(
        image,
        et_reference_source=et_reference_source,
        et_reference_band=et_reference_band).et
# Build the SSEBop model for each image then compute and return ET
    et_coll = ee.ImageCollection(landsat_coll.map(compute_et))
# pprint.pprint(ee.Image(et_coll.first()).getInfo())
```

M

In [8]:

```
def compute_et(image):
    return model.Image.from_landsat_c1_toa(
        image,
        et_reference_source=et_reference_source,
        et_reference_band=et_reference_band).et
# Build the SSEBop model for each image then compute and return ET
et_coll = ee.ImageCollection(landsat_coll.map(compute_et))
# pprint.pprint(ee.Image(et coll.first()).getInfo())
```

In [9]:

```
M
```

М

Out[9]:

Custom Image Class Parameters

It is also possible to pass custom parameter to the Image class as long as they are the same for all images.

For this example, the reference ET collection ID and band are being set to GRIDMET, and the temperature difference threshold is being changed from the default of 15 to 1 (to show that it works).

In [10]:

```
def custom_et(image):
    image_obj = model.Image.from_landsat_c1_toa(
        image,
        et_reference_source='IDAHO_EPSCOR/GRIDMET',
        et_reference_band='etr',
        dt_max=10)
    return image_obj.et
```

```
# Build the SSEBop model for each image then compute and return ET
et_coll = ee.ImageCollection(landsat_coll.map(custom_et))
```

In [11]:

Out[11]:

Map the calculate method over the Landsat collection

M

In [12]:

```
def compute_vars(image):
    """Return an ET image for each input Landsat 8 C1 TOA image"""
    return model.Image\
        .from_landsat_c1_toa(
            image,
            et_reference_source=et_reference_source,
            et_reference_band=et_reference_band)\
        .calculate(['et', 'et_reference', 'et_fraction'])
# Build the SSEBop model for each image then compute and return ET, ETr, and ETf
vars_coll = ee.ImageCollection(landsat_coll.map(compute_vars))
```

```
# pprint.pprint(ee.Image(et_coll.first()).getInfo())
```

In [13]:

Out[13]:

In []:	M
In []:	M

M

Apéndice D.3. Computing Annual *ET* From a Collection

OpenET SSEBop

Collection "Overpass" Examples

In [1]:

import datetime
import pprint

import ee
import pandas as pd

from IPython.display import Image
import openet.ssebop as model

ee.Initialize(use_cloud_api=True)

In [2]:

```
ndvi_palette = ['#EFE7E1', '#003300']
et_palette = [
    'DEC29B', 'E6CDA1', 'EDD9A6', 'F5E4A9', 'FFF4AD', 'C3E683', '6BCC5C',
    '3BB369', '20998F', '1C8691', '16678A', '114982', '0B2C7A']
image_size = 768
landsat_cs = 30
```

M

M

Input parameters

302

```
In [3]:
```

```
collections = ['LANDSAT/LC08/C01/T1_T0A']
et_reference_source = 'projects/climate-engine/cimis/daily'
et_reference_band = 'ETr_ASCE'
et_reference_factor = 1.0
et_reference_resample = 'nearest'
# et_reference_source = 'IDAHO_EPSCOR/GRIDMET'
# et_reference_band = 'etr'
# et_reference_factor = 0.85
# et_reference_resample = 'nearest'
# Date range you want to aggregate ET over
# End date is inclusive (like filterDate() calls)
start_date = '2017-07-01'
end_date = '2017-08-01'
# Only keep images with an average cloud cover less than
# Cloud cover filter parameter is not being passed in (yet)
cloud_cover = 70
# Number of extra days (at start and end) to include in interpolation
interp days = 32
# Interpolation method - currently only LINEAR is supported
interp_method = 'LINEAR'
test point = ee.Geometry.Point(-121.5265, 38.7399)
study_area = ee.Geometry.Rectangle(-122.00, 38.60, -121.00, 39.0)
# Hard code the study area and CRS
study_region = study_area.bounds(1, 'EPSG:4326').coordinates().getInfo()
study crs = 'EPSG:32610'
```

Landsat 8 Collection 1 TOA Image Collection

In [4]:

```
model_obj = model.Collection(
    collections=collections,
    et_reference_source=et_reference_source,
    et_reference_band=et_reference_band,
    et_reference_factor=et_reference_factor,
    et_reference_resample=et_reference_resample,
    start_date=start_date,
    end_date=end_date,
    geometry=test_point,
    cloud_cover_max=70,
    # filter_args={},
)
pprint.pprint(model_obj.get_image_ids())
```

['LANDSAT/LC08/C01/T1_T0A/LC08_043033_20170709', 'LANDSAT/LC08/C01/T1_T0A/LC08_043033_20170725', 'LANDSAT/LC08/C01/T1_T0A/LC08_044033_20170716'] M

In [5]:

```
def get_region_df(info):
    """Convert the output of getRegions to a pandas dataframe"""
    col_dict = {}
    info_dict = {}
    for i, k in enumerate(info[0][4:]):
        col_dict[k] = i+4
        info_dict[k] = {}
    for row in info[1:]:
        date = datetime.datetime.utcfromtimestamp(row[3] / 1000.0).strftime('%Y-%m-%d')
        for k, v in col_dict.items():
            info_dict[k][date] = row[col_dict[k]]
    return pd.DataFrame.from_dict(info_dict).sort_index()
```

"Overpass" Collection

In [6]:

M

M

M

M

overpass_coll = model_obj.overpass(variables=['ndvi', 'et', 'et_reference', 'et_fraction'])

In [7]:

```
overpass_df = get_region_df(overpass_coll.getRegion(test_point, scale=30).getInfo())
pprint.pprint(overpass_df)
print('')
pprint.pprint(overpass_df[['et', 'et_reference']].sum())
```

```
ndvi et et_reference et_fraction
2017-07-09 -0.391414 11.302805 10.764576 1.050000
2017-07-16 -0.502571 10.705041 10.472619 1.022193
2017-07-25 -0.414181 9.850493 9.381422 1.050000
```

```
et 31.858339
et_reference 30.618617
dtype: float64
```

NDVI

```
In [8]:
```

Out[8]:

ET fraction

In [9]:

Out[9]:

Reference ET

In [10]:

M

Out[10]:

ЕТ

In [11]:

Out[11]:

In []:

